You are welcome to work together but everyone needs to write up **distinct** solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to IAT_{FX} .

Warmup

- §1.2 #2. Find the greatest common divisor g of the numbers 1819 and 3587 using the Euclidean Algorithm, and then find integers x and y to satisfy 1819x + 3587y = g. (For the second part, check out Example 2 on pg. 13).
- $\S1.2 \#5$. How many integers between 100 and 1000 are divisible by 7?
- §1.2 #6. Prove that the product of three consecutive integers is divisible by 6; of four consecutive integers by 24.
- $\S1.2 \#9$. Show that if $ac \mid bc$ then $a \mid b$.
- $\S1.2 \#10$. Given $a \mid b$ and $c \mid d$, prove that $ac \mid bd$.
- §1.2 #17. Evaluate (n, n + 1) and [n, n + 1] where n is a positive integer.

Problems

- 1. §1.2 #14. Prove that if n is odd, $n^2 1$ is divisible by 8.
- 2. §1.2 #23. Prove that the square of any integer is of the form 3k or 3k + 1 but not of the form 3k + 2.
- 3. §1.2 #31. Let $n \ge 2$ and k be any positive integers. Prove that $(n-1) \mid (n^k 1)$.
- 4. §1.2 #33. Prove that (a, b) = (a, b, a + b), and more generally that (a, b) = (a, b, ax + by) for all integers x and y.
- 5. §1.2 #43. Prove that $a \mid bc$ if and only if $\frac{a}{(a,b)} \mid c$.

Challenge

I. §1.2 #46. Prove that there are no positive integers a, b, n > 1 such that $(a^n - b^n) \mid (a^n + b^n)$.