For problems 1-4 assume H and K are groups, ϕ a homomorphism from K into Aut(H), and identify H and K as subgroups of $G = H \rtimes_{\phi} K$.

- 1. Section 5.5 #1. Prove that $C_K(H) = \ker \phi$. [Hint: $C_K(H) = C_G(H) \cap K$].
- 2. Section 5.5 #16. Show that there are exactly 4 distinct homomorphism from Z_2 into Aut(Z_8). Prove that two of the resulting semidirect products are isomorphic to $Z_8 \times Z_2$ and D_{16} .
- 3. Section 5.5 # 18. Show that if H is any group then there is a group G that contains H as a normal subgroup with the property that for every automorphism σ for H there is an element $g \in G$ such that conjugaction by G when restricted to H is the given automorphism σ .
- 4. Section 5.5 # 21. Let p be an odd prime and let P be a p-group. Prove that if every subgroup of P is normal then P is abelian. [Hint: You may find Exercise 20 of section 5.5 useful.]
- 5. Section 6.2 # 14. Prove there are no simple groups of order 144.
- 6. Section 6.3 # 2. Prove that if |S| > 1 then F(S) is non-abelian.
- 7. Section 6.3 # 4. Prove that every nonidentity element of a free group is of infinite order.
- 8. Exhibit all degree 1 complex representations of a finite abelian group. Deduce that the number of such representations equals the order of the group. [Hint: First decompose the abelian group into a direct product of cyclic groups.]
- 9. Let X be a finite set on which G acts and let ρ be the corresponding permutaion representation and let χ_X be the character of ρ . Let $g \in G$ and show that $\chi_X(g)$ is the number of elements of X fixed by g.