Math 215: Linear Algebra PROBLEM SET 4 : DUE NOVEMBER 6

(20 points) Make sure you are familiar with the Academic Honesty policies for this class, as detailed on the syllabus. All work is due on the given day by 3 PM Grinnell Time, or 7 PM if you LaTeX the assignment.

1. In class, we defined a function $f: A \to B$ to be injective when for all $a_1, a_2 \in A$, if $f(a_1) = f(a_2)$ then $a_1 = a_2$.

(a) (1 point) Write the contrapositive of this definition. (We will sometimes use this as an alternative way to describe an injective function).

- (b) (1 point) Negate the definition of injective.
- (c) (2 points) Use (b) to prove that $f : \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \sin(x)$ is not injective.
- 2. (5 points) For this problem do a **double containment proof** to show the two sets $A = \{3x + 1 : x \in \mathbb{Z}\}$ and $B = \{3x 2 : x \in \mathbb{Z}\}$ are equal. Anything other than a double containment proof will get no credit.
- 3. (5 points) Suppose A and B subsets of some set U. Prove or disprove that the sets $A \cap B$ and $A \setminus B$ are disjoint.
- 4. (6 points) The following claim is false:

Let A, B, and C be subsets of some set U. If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$.

(a) Here is a wrong "Proof". Describe precisely where the logic fails in this proof.

We assume that A, B, and C are subsets of U and that $A \not\subseteq B$ and $B \not\subseteq C$. This means that there exists an element $x \in A$ that is not in B and there exists an element x that is in B and not in C. Therefore, $x \in A$ and $x \notin C$, and we have proved that $A \not\subseteq C$.

(b) Suppose U is the integers, \mathbb{Z} . Come up with an explicit example for sets A, B, and C where the claim stated above fails. If you work with others to come up with ideas for this part, you should each have different final answers here.