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Abstract. We present a new technique to study Jacobian variety decom-

positions using subgroups of the automorphism group of the curve and the
corresponding intermediate covers. In particular, this new method allows us

to produce many new examples of genera for which there is a curve with com-

pletely decomposable Jacobian. These examples greatly extend the list given
by Ekedahl and Serre of genera containing such curves, and provide more ev-

idence for a positive answer to two questions they asked. Additionally, we

produce new examples of families of curves, all of which have completely de-
composable Jacobian varieties. These families relate to questions about special

subvarieties in the moduli space of principally polarized abelian varieties.

1. Introduction

A principally polarized abelian variety over C is called completely decomposable
if it is isogenous to a product of elliptic curves. In [Ekedahl and Serre 93] the
following two questions are asked.

Question 1. Is it true that, for all positive integers g, there exists a curve of genus
g whose Jacobian is completely decomposable?

Question 2. Is the set of genera for which a curve with completely decomposable
Jacobian exists infinite?

They demonstrate various curves up to genus 1297 with completely decomposable
Jacobian varieties. However, there are numerous genera in that range for which they
do not produce an example of a curve with this property.

Since their paper, there has been much interest in curves with completely decom-
posable Jacobian varieties, particularly the applications of such curves to number
theory. Dimension two has been widely studied; for example, in [Earle 06] a full
classification of Riemann matrices of strictly completely decomposable Jacobian va-
rieties of dimension 2 is given (these are Jacobians which are isomorphic to a prod-
uct of elliptic curves). In [Kani 94], the case of completely decomposable abelian
surfaces is studied, and several other authors have also studied these questions. See
[Carocca et al. 14], [Magaard et al. 09], [Nakajima 07], and [Yamauchi 07], among
many others.

Additionally, in [Moonen and Oort 11, Question 6.6] the authors ask about positive-
dimensional special subvarieties, Z, of the closure of the Jacobian locus in the
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moduli space of principally polarized abelian varieties such that the abelian variety
corresponding with the geometric generic point of Z is isogenous to a product of el-
liptic curves. In Section 3.3, we discuss examples of positive-dimensional families of
curves with completely decomposable Jacobians, and connections to this question.

Despite advancements in the field, the questions of [Ekedahl and Serre 93] still
remain open. Since the publication of Ekedahl and Serre’s list 20 years ago, there
have been few new examples of curves with completely decomposable Jacobians
in a genus not included on that list. In [Yamauchi 07], the author gives a list
of integers N such that the Jacobian variety J0(N) of the modular curve X0(N)
has elliptic curves as Q−simple factors. These examples include three genera not
previously noted in [Ekedahl and Serre 93] for which there is a completely decom-
posable Jacobian variety: these are genus 113, 161, and 205 (corresponding to
N = 672, 1152, and 1200, respectively). His techniques are number theoretic and
relate to [Ekedahl and Serre 93, Section 2].

In this paper, we use experimental tools to find many examples of completely
decomposable Jacobian varieties in new genera. To find these examples, we use
the action of the automorphism groups on curves, particularly a new approach in-
volving known results on intermediate coverings, i.e., quotients by the action of
subgroups of the full group acting on the variety.

We summarize the main results of this work in the following theorem. The bold
numbers indicate genera which are new in this paper.

Theorem. For every g ∈ {1–29, 30, 31, 32, 33, 34–36, 37, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51–52, 53, 54, 55, 57, 58, 61, 62–64, 65, 67, 69, 71–72,
73, 79–81, 82, 85, 89, 91, 93, 95, 97, 103, 105–107, 109, 118, 121, 125, 129,
142, 145, 154, 161, 163, 193, 199, 211, 213, 217, 244, 257, 325, 433} there is
a curve of genus g with completely decomposable Jacobian variety found using a
group acting on a curve.

In some cases there is a family of dimension greater than 0 with such a decompo-
sition on the whole family. The Theorem includes all genera previously determined
except for g = 113, 205, 649, and 1297. Even for the already known genera, most
of our examples are not the same as those found previously. Many of the examples
found in [Ekedahl and Serre 93] use the theory of modular curves. We compared
the automorphism groups of the modular curves given in [Ekedahl and Serre 93] to
the automorphism groups in our examples and they are not equal. Genus 3 to 10,
except genus 8 are in [Paulhus 08]. Genus 8 may be found with a curve of automor-
phism group of size 336 whose Jacobian is isogenous to E8 for some elliptic curve E.

The previous theorem, and the approach we outline in Section 2.2, support the
possibility that Question 1 has a positive answer, and that group actions might
be the tool to answer it. As we will see, once there is a completely decomposable
Jacobian variety in one larger genus, by considering subgroups it is possible to also
produce new examples in lower genera. This provides a way to fill in gaps in the
data.
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We describe the techniques used to decompose Jacobians in Sections 2.1 and
2.2. In Section 3 we give explicit examples in both new and old genera. Our new
examples may be found in Theorem 3.1 and Theorem 3.2. Those genera with a
family of curves of dimension greater than 0 with completely decomposable Jaco-
bians are given in Theorem 3.3. The computations needed to find both the old and
new examples were made using Magma [Bosma et al. 97] and code to verify the
decompositions is available at [Paulhus and Rojas 16]. Finally, we address compu-
tational limitations of our techniques in Section 4. The many examples from the
paper may be useful to researchers interested in open questions surrounding curves
with completely decomposable Jacobians.
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2. Techniques

Consider a compact Riemann surface X (referred to from now on as a “curve”)
of genus g with a finite group G acting on that curve. We write the quotient
curve X/G as XG and the genus of the quotient as g0. Let the cover X → XG be
branched over r places, q1, . . . , qr ∈ XG. The signature of the cover is the (r + 1)-
tuple [g0; s1, s2, . . . , sr] where the si are the ramification indices of the covering at
the branch points. We denote the Jacobian variety of X by JX.

2.1. The group algebra decomposition. To find many examples, we use the
group action of the automorphism group G of X to decompose JX. We briefly
describe the technique here for a general abelian variety A. More details may be
found in the original article [Lange and Recillas 04] or [Birkenhake and Lange 04,
Chp. 13].

Let A be an abelian variety of dimension g with a faithful action of a finite group
G. There is an induced homomorphism of Q-algebras

ρ : Q[G]→ EndQ(A).

Any element α ∈ Q[G] defines an abelian subvariety

α(A) := Im(mρ(α)) ⊂ A

where m is some positive integer such that mρ(α) ∈ End(A). This definition does
not depend on the chosen integer m.

Begin with the decomposition of Q[G] as a product of simple Q-algebras Qi

Q[G] = Q1 × · · · ×Qr.

The factors Qi correspond canonically to the rational irreducible representations
Wi of the group G, because each one is generated by a unit element ei ∈ Qi which
may be considered as a central idempotent of Q[G].

The corresponding decomposition of 1 ∈ Q[G],

1 = e1 + · · ·+ er
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induces an isogeny, via ρ above,

(1) e1(A)× · · · × er(A)→ A

which is given by addition. Note that the components ei(A) are G-stable complex
subtori of A with HomG(ei(A), ej(A)) = 0 for i 6= j. The decomposition (1) is
called the isotypical decomposition of the complex G-abelian variety A.

The isotypical components ei(A) can be decomposed further, using the decom-
position of Qi into a product of minimal left ideals. If Wi is the irreducible rational
representation of G corresponding to ei for every i = 1, . . . , r, and χi is the character
of Ui, one of the irreducible C-representations associated to Wi, then set

ni =
dimUi
mi

where mi denotes the Schur index of χi. There is a set of primitive idempotents
{πi1, · · · , πini

} in Qi ⊂ Q[G] such that

ei = πi1 + · · ·+ πini
.

Moreover, the abelian subvarieties πij(A) are mutually isogenous for fixed i and j =
1, . . . , ni. Call any one of these isogenous factorsBi. Then (see [Carocca and Rodŕıguez 06])

Bni
i → ei(A)

is an isogeny for every i = 1, . . . , r. Replacing the factors in (1) we get an isogeny
called the group algebra decomposition of the G-abelian variety A

(2) Bn1
1 × · · · ×Bnr

r → A.

Note that, whereas (1) is uniquely determined, (2) is not. It depends on the
choice of the πij as well as the choice of the Bi. However, the dimension of the
factors will remain fixed regardless of these choices.

Remark 2.1. While the factors in (2) are not necessarily easy to determine, we
may compute their dimension in the case of a Jacobian variety JX with the action
of a group G induced by the action on the corresponding Riemann surface X (see
[Paulhus 08] for details). Define V to be the representation of G on H1(X,Z)⊗ZQ.
As mentioned at the beginning of this section, here we assume the quotient XG

has genus g0 and the cover π : X → XG has r branch points {q1 . . . , qr} where
each qi has corresponding monodromy ci ∈ G. The tuple (c1, . . . , cr) is called the
generating vector for the action [Broughton 90].

Then the character χV associated to V is

(3) χV = 2χtriv + 2 (g0 − 1) ρ〈1G〉 +

r∑
i=1

(
ρ〈1G〉 − ρ〈ci〉

)
[Broughton 90, Equation 2.14], where χtriv is the trivial character on G, ρH is the
induced character on G of the trivial character of the subgroup H (when H = 〈ci〉,
this subgroup is the stabilizer, or isotropy group, of a point in the fiber of the
branch point qi), and ρ〈1G〉 is the character of the regular representation.

According to [Lange and Rojas 12, Eq. (3.4)], the dimension of a subvariety Bi
corresponding to the isotypical factor (2) associated to the (non-trivial) rational
representation Wi is
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(4) dimCBi =
mi[Ki : Q]〈χV , χi〉

2
=
〈χV ,mi[Ki : Q]χi〉

2
,

where χi is the character of one of the irreducible C-representations associated
to Wi; this is, the character of a complex irreducible representation decomposing
Wi ⊗ C, and Ki is the field extension of Q containing all values of χi on elements
of G.

It is a classical result in representation theory, see Proposition 2.2 below, that

Wi ⊗ C = mi

⊕
σ∈Ki

Uσi ,

where Ui is the complex irreducible representation affording χi. Combining this
decomposition with (4), we get

(5) dimCBi =
1

2
〈χV , ψi〉

where here ψi is the character of the Q-irreducible representation Wi of G corre-
sponding to Bi, and χV is the character defined in (3).

One way we find completely decomposable Jacobian varieties is to search for
curves so that the decomposition in (2) gives factors Bi of dimension only 0 or 1,
computed via (5).

In practice, given a group G, we can use Magma to compute its C-character
table. Then we determine the characters of the irreducible Q-representation using
the following result.

Proposition 2.2. [Curtis and Reiner 62, Exercise 70.30.2] Let {χ1, . . . , χr} be the
irreducible C-characters of a finite group G. Then φ is an irreducible Q-character
if and only if φ = mi · (χi +χσi + · · · ) where the {χσi } are the distinct conjugates of
χi, an irreducible C-character of G.

2.2. Intermediate Covering Decomposition. While the technique in the pre-
vious section gives us new examples of completely decomposable Jacobians in new
genera (see Theorem 3.1), we can extend the technique by studying decompositions
of intermediate coverings of a higher genus curve which has a known decomposition
of its corresponding Jacobian variety. This idea expands the range of genera with
completely decomposable Jacobians which can be found using group actions. We
find many more new genera, as listed in Theorem 3.2.

To describe the technique, we begin with the following proposition.

Proposition 2.3. [Carocca and Rodŕıguez 06, Proposition 5.2] Given a Galois
cover X → XG, consider the group algebra decomposition (2)

JX ∼ B
dimV1

m1
1 × · · · ×B

dimVr
mr

r

where Vj is a complex irreducible representation associated to Bj. If H is a subgroup
of G then the group algebra decomposition of JXH is given as

(6) JXH ∼ B
dimV H

1
m1

1 × · · · ×B
dimV H

r
mr

r

where V Hj is the subspace of Vj fixed by H.
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By Frobenius Reciprocity, we know that

(7) dimVj
H = 〈Vj , ρH〉

where 〈Vj , ρH〉 is the inner product of the characters of these representations. Sup-
pose X is a curve with a known Jacobian decomposition as in (2), not necessarily
completely decomposable. Then apply the previous proposition to get a decom-
position of JXH as in (6) where JXH will be completely decomposable precisely
when 〈Vj , ρH〉 = 0 for all j such that dimBj > 1 for the Bi in the decomposition
of JX. We have thus proven:

Proposition 2.4. Given the conditions in the previous proposition, assume that
〈Vj , ρH〉 = 0 for all j such that dimBj > 1. Then the Jacobian variety of the curve
XH is completely decomposable.

Notice that even though a Jacobian variety JX may not be completely decom-
posable, a Jacobian JXH of some intermediate cover XH = X/H could decompose
completely. This gives us a much richer set of curves to search through to find com-
pletely decomposable Jacobian varieties. There are numerous examples of curves
in high genus whose Jacobians decompose into many elliptic curves, but may not
be themselves completely decomposable. By applying Proposition 2.4, quotients of
these curves may then be completely decomposable.

Let us demonstrate with a couple of examples. More details and several other
examples may be found in Section 3.2. First, a note on our notation for the rest
of the paper. In most instances, we will write a specific group as an ordered pair,
where the first number is the order of the group and the second number is its num-
ber in the Magma or GAP database of groups of small order. Some of the Magma
code we use requires all groups to be represented as permutation groups. Thus,
throughout the rest of the paper, the numbers used to label a specific subgroup or
conjugacy class of a group will be for the group as a permutation group. Again,
see [Paulhus and Rojas 16] for code used. For the Jacobian decompositions, when
we write En × Em we are assuming that En corresponds to one factor Bni

i from
(2) and Em corresponds to a different factor B

nj

j in (2). Our technique does not
rule out the possibility that these elliptic curves are in fact isogenous.

Example 1. A complete search of genus 12 curves as listed in [Breuer 00] using
techniques from Section 2.1 gives no example of a genus 12 curve with a completely
decomposable Jacobian. However, we may find one as the quotient of a higher
genus curve which has a completely decomposable Jacobian. There is a curve X
of genus 29 with the action of G =PGL(2, 7) × C2, (where C2 is the cyclic group
of order 2) and signature [0; 2, 4, 6]. In the Magma or GAP small group databases,
this is group (672, 1254).

First we compute the Jacobian decomposition for this curve (2). The Schur index
of all characters of this group is 1 and so ni in (2) will be the dimension of the cor-
responding irreducible C-representation. For this particular group, all irreducible
C-representations have dimensions 1, 6, 7, or 8. To compute the dimensions of the
Bi in (2), we must determine χV from (3). The generating vector for this action
is computed using using modifications to [Breuer 00] as described in [Paulhus 15].
See Section 3 for more information.
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Once we have χV , it only remains to compute the irreducible Q-characters us-
ing Proposition 2.2, and the inner product in (5). The four linear irreducible C-
characters are each irreducible Q-characters, but the inner product of each with χV
is 0. There are six irreducible C-characters of degree 6. Two are also irreducible
Q-characters, while the other four form two irreducible Q-characters in pairs (using
Proposition 2.2 they form two pairs of Galois conjugates). The inner product in (5)
is 0 for all but one of these characters– one of the irreducible C-characters which is
also an irreducible Q-character. In both degree 7 and 8, the group G admits four
irreducible C-characters. All of these are also irreducible Q-characters and when
we compute the inner product as in (5) we get 0 for all but one degree 7 character
and all but two degree 8 characters.

In all cases where the inner product is greater than 0, it evaluates to 2, hence
by (5) the dimension of the Bi are all 1. Plugging all the computed values into (2)
produces a Jacobian decomposition of X as

JX ∼ E6 × E7 × E8 × E8.

The group G has four non-normal subgroups H of order 2. We determine (6)
for each subgroup, computing the dimension of the V Hi by (7). One subgroup H is
such that the dimensions of the fixed spaces for the corresponding representations
from the decomposition above are all 3. Therefore the Jacobian of the intermediate
curve XH (a genus 12 curve) decomposes as the same four elliptic curves as in the
decomposition of JX, each one to the power of 3. That is,

J(XH) ∼ E3 × E3 × E3 × E3.

Note that Ekedahl and Serre also find a genus 12 example as a quotient of the
modular curve X0(198) of genus 29 by an involution. However, the group in our
example is too large to be the automorphism group of this modular curve.

Example 2. Using this technique on one of our new examples from Section 2.1,
we can generate another example. Consider G = (720, 767) acting on a curve X of
genus 61 with signature [0; 2, 6, 6]. It has a subgroup H of order 2 such that XH has
genus 30 and a completely decomposable Jacobian. Note that Ekedahl and Serre
did not construct an example in this genus.

Example 3. Finally consider an example of a higher genus curve which is not
completely decomposable, but an intermediate cover produces a lower genus curve
which is completely decomposable. There is a genus 101 curve with automorphism
group G = (800, 980) and signature [0; 2, 8, 8] whose Jacobian decomposes via (2)
as

JX ∼ E ×A2 × E2 × E8 × · · · × E8︸ ︷︷ ︸
12

where A2 is an abelian variety of dimension 2. This group has three subgroups H of
order 2 which produce quotients of genus 51. One of those three subgroups produces
a decomposition as in (2) where the subspace of the factor above of dimension 2
fixed by H has dimension 0 (as computed via (7)), and thus we get the following
complete decomposition:

JXH ∼ E × E2 × E4 × · · · × E4︸ ︷︷ ︸
12

.

Again, Ekedahl and Serre did not construct an example in this genus.
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3. Results

In this section we apply the techniques from Sections 2.1 and 2.2 to find com-
pletely decomposable Jacobian varieties (including all the genera previously found
in either [Ekedahl and Serre 93] or [Yamauchi 07] except for g = 113, 205, 649, and
1297).

Our primary task is to find examples where the dimensions in (2) or (6) above are
all 0 or 1. To construct our examples, we must know the automorphism group and
signature of curves in high genus. We use three data sources for this information.
In [Breuer 00] there are complete lists of automorphism groups and signatures for
curves of a given genus up to genus 48. We use his data up through genus 20.
For genus 21–101, we use data computed by [Conder 10], giving all automorphism
groups of size greater than 4(g−1) for a given genus g (this size condition guarantees,
in particular, that g0 is 0).

Finally, for genus greater than 101, we use the ideas described in [Conder 14]
to find possible automorphism groups corresponding to a few targeted signatures
(particularly those signatures which gave us lower genus examples as in Theorem
3.1).

A group G acting on a curve with signature [0; s1, . . . , sr] is equivalent to the
existence of a surjective homomorphism K � G where K is a Fuchsian group
[Harvey 71] defined as

K = 〈x1, . . . , xr|xs11 = · · · = xsrr = x1 · · ·xr = 1〉.

To find examples of large groups acting on curves of g > 100, we use the Magma
command LowIndexNormalSubgroup(K,n) to find all possible normal subgroups of
the group K up to index n. The quotient of K by these normal subgroups will be
the automorphism group of some curve. The genus only depends on the signature
and the choice of n (see [Farkas and Kra 92, page 260] ). See [Conder 14] for more
details. We will see that these large genus curves give us many new examples.

Notice that the computation of χV in (3) requires knowledge of a generating
vector of the action. Modifications to [Breuer 00] give us a way to compute gen-
erating vectors if the automorphism group and signature are already known. See
[Paulhus 15] for details.

For each of these three data sets and a fixed group G and signature, we first com-
pute the Jacobian decomposition as in (2) and, if this is completely decomposable,
we record it. Next we compute all subgroups of G and if any of those produce a
quotient of genus still without a known example, we apply the technique of Section
2.2 to determine if this subgroup produces a completely decomposable intermedi-
ate cover. Note that from (6), if we take a completely decomposable Jacobian of
higher genus, the Jacobian variety corresponding to any intermediate quotient by
any subgroup will automatically be completely decomposable.

In our computations, as we increased the genus, we removed from consideration
all lower genera we had already found an example for. So our examples for Section
2.2 are just a sample of such curves for a given genus and may not represent all
curves of that genus which have decomposable Jacobians realizable through group
actions. We chose as our goal demonstrating the usefulness of our technique, and
not performing an exhaustive search of all decomposable Jacobians for any known
genus.
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We divide the results into three sections: those found through the technique in
§2.1, those found through the technique in §2.2, and those which give a family of
dimension greater than 0 of completely decomposable Jacobians of a given genus.

3.1. Group algebra decomposition examples. The new genera, those not in-
cluded in Ekedahl and Serre’s paper, found using the technique in Section 2.1 are
given here.

Theorem 3.1. Let g ∈ {36, 46, 81, 85, 91, 193, 244}. There is a completely decom-
posable Jacobian variety of dimension g. Moreover, each one corresponds to the
Jacobian variety of a curve of genus g with the action of a group G as listed in
Table 1. The signature for the action and the decomposition are also listed in the
table.

Proof. The proof consists of following the program outlined in Section 2.1. For this
we need to find appropriate group actions for the missing genera.

In genus 36 there are, up to topological equivalence, two curves with automor-
phism group PGL(2, 7) and signature [0; 2, 6, 8]. It is possible to classify actions
topologically by using the action of the braid group on a generating vector for the
action. We do not describe these details here, but references are [Broughton 90],
[Harvey 71] and [Völklein 96]. A review of the principal results on this matter and
a program in Sage [Stein et al. 15] which computes the non-equivalent actions, can
be found in [Muñoz 14], [Behn et al. 15].

To decompose these Jacobian varieties, we need to determine the dimension of
the Bi and the values of the ni in (2). The irreducible C-characters of this group are
all irreducible Q-characters, except for two of degree 6, and the Schur index of all
characters is one. This means the ni are just the dimensions of the corresponding
irreducible C-representations. To compute the dimension of the Bi we must first
compute χV as in (3), using modifications to [Breuer 00] as described in [Paulhus 15]
to determine the generating vector. Next, we compute the inner products as in (5).
The components which give a non-trivial value for this inner product come from
the irreducible C-character of degree 6 which is also an irreducible Q-character, and
the two irreducible Q-characters in each of degrees 7 and 8.

The decomposition then follows from (2) and (5):

JX ∼ E6 × E7 × E7 × E8 × E8.

In genus 46 there is one curve, up to topological equivalence, with automorphism
group (324, 69) and signature [0; 2, 6, 18]. Again, to determine the decomposition,
we need to determine the ni and dimension of the Bi in (2). Once more, the Schur
index is 1 for all characters in this group. We compute χV from (3) and then
compute the inner product in (5) with each irreducible Q-character.

In this case, the non-zero inner products (which correspond to non-trivial factors
in the Jacobian decomposition) come from two separate sets of two linear irreducible
C-characters whose sums are irreducible Q-characters (each pair is a pair of Galois
conjugates), one set of two degree 2 irreducible C-characters whose sum is also an
irreducible Q-character, and seven of the eight irreducible C-characters of degree 6
which are all also irreducible Q-characters. Again, see Proposition 2.2 for how we
compute irreducible Q-characters from complex character tables.

This curve, then, has a decomposition

JX ∼ E × E × E2 × E6 × E6 × E6 × E6 × E6 × E6 × E6.
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In genus 81 a curve X with automorphism group (1152, 157853) and signature
[0; 2, 4, 9] has Jacobian decomposition

JX ∼ E9 × E9 × E9 × E9 × E9 × E9 × E9 × E9 × E9.

For genus 85 there is a curve X with automorphism group of size 2016 given as
[Conder 10]

〈x, y, z|x2
, z

−1
y
−1

x, y
4
, z

6
, y

−1
zyxz

2
yxy

−1
zy

−1
z
−2

xz, yz
−1

yz
−1

yz
−1

xy
2
z
−1

yz
−1

yz
−2〉

and with signature [0; 2, 4, 6] which has Jacobian decomposition

E6 × E7 × E8 × E8 × E12 × E14 × E14 × E16.

In the genus 81 case, the factors in this decomposition come from nine separate
degree 9 irreducible C-characters which are all irreducible Q-characters. In the
genus 85 case, the factors in the decomposition come from irreducible C-characters
one each of degree 6, 7, 12, and 16, and two each of degree 8 and 14. All of these
characters are irreducible Q-characters.

For genus 91 there is a one-dimensional family of curves with automorphism
group G = (432, 686) and signature [0; 2, 2, 2, 12]. All curves in this family are com-
pletely decomposable. Using data from [Conder 10] for genus 91, there is no larger
automorphism group which has curves with completely decomposable Jacobians.
In particular, no curve in this family has a larger automorphism group.

Finally, for genus 193 there is a curve with automorphism group of size 5760
and signature [0; 2, 3, 10] while in genus 244, the size of the group is 11, 664 and
the signature is [0; 2, 3, 8]. Both examples were found using the Magma command
LowIndexNormalSubgroup to determine the automorphism groups. Here is the
presentation of the group for genus 193:

〈x, y, z|x2
, y

3
, z

10
, z

−1
y
−1

x, xz
2
yz

−1
xzy

−1
z
−2

xzy
−1

z
−2

, yz
−1

xz
4
yz

−1
xy

−1
z
−1

xy
−1

z
−2

xz
4
yz

−1
xy

−1
z
−1

xz,

z
2
y
−1

z
−4

xzyz
−1

xz
2
yxzyxz

−1
xzy

−1
z
−3

x〉,

and here is the presentation for the group of genus 244:

〈x, y, z|x2
, y

3
, z

8
, z

−1
y
−1

x, zyxzyxzyxy
−1

z
−1

xy
−1

z
−1

xy
−1

z
−1

x, z
2
yxz

2
yxz

2
yxz

2
yxy

−1
xy

−1
z
−1

xzy
−1

z
−1

x〉.

In all cases, the Schur index is 1. �

In Table 1 we record one example of a curve with completely decomposable Ja-
cobian for each genus found with the technique from Section 2.1. For completeness,
we include the genera found by Ekedahl and Serre, or Yamauchi. For each genus,
we display an example with the largest automorphism group we found. In many,
but not all, cases, this is the largest automorphism group possible for that genus.
In the table we include the automorphism group as well as the signature. When
possible, we denote the groups as ordered pairs where the first term is the order
of the group, and the second term is the group identity number from the Magma
or GAP databases. If the order of the group exceeds the allowable sizes for these
databases, we have labeled the group as a number (sometimes with a subscript).
The number represents the order of the group. If the subscript itself is a number,
then the group presentation may be found in data of Conder [Conder 10] where the
subscript denotes which of the groups of that order (and with the corresponding
signature) in his data it is. If the subscript is a letter (or if there is no subscript at
all), the presentation of the group may be found at [Paulhus and Rojas 15].

The final column of the table represents the decomposition as a list of numbers
which represent the ni from (2). Again, we note that it is conceivable that distinct
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elliptic curve factors in (2) may be isogenous. The new examples from this technique
are denoted by a *.

All of our examples come from group actions, while some of Ekedahl and Serre’s
examples (and the newer work of Yamauchi [Yamauchi 07]) use modular curves.
We checked that in the genera where examples were obtained with modular curves
in [Ekedahl and Serre 93], our corresponding example was not a modular curve. To
determine this, we compared the size of the automorphism group of modular curves
of the relevant level, which can be determined by using [Kenku and Momose 88,
Theorem 0.1] and [Akbas and Singerman 90, Proposition 2], with the size of the
automorphism groups of our examples. Only in g = 73 did the sizes match, and in
that case we explicitly computed the automorphism group of X0(576) to determine
that it is not the same as our example in Table 1. Notice that our genus 26 example
is the well known example of the curve X(11).

Table 1: Curves with completely decomposable Jacobians in genus greater than 10, using
group algebra decomposition. The examples are those we found with the largest automor-
phism group for that genus.

Genus Automorphism Group Signature Jacobian Decomposition

11 (240, 189) [0; 2, 4, 6] 5, 6

13 (360, 121) [0; 2, 3, 10] 5, 8

14 (1092, 25) [0; 2, 3, 7] 14

15 (504, 156) [0; 2, 3, 9] 7, 8

16 (120, 34) [0; 3, 4, 6] 5, 5, 6

17 (1344, 814) [0; 2, 3, 7] 3, 14

19 (720, 766) [0; 2, 4, 5] 9, 10

21 (480, 951) [0; 2, 4, 6] 5, 6, 10

22 (504, 160) [0; 2, 3, 12] 1, 3, 18

24 (168, 42) [0; 3, 4, 7] 3, 6, 7, 8

25 (576, 1997) [0; 2, 3, 12] 1, 2, 4, 6, 12

26 (660, 13) [0; 2, 3, 11] 5, 10, 11

28 (1296, 2889) [0; 2, 3, 8] 2, 8, 18

29 (672, 1254) [0; 2, 4, 6] 6, 7, 8, 8

31 (720, 767) [0; 2, 4, 6] 5, 6, 8, 12

33 (1536, 408544637) [0; 2, 3, 8] 2, 3, 12, 16

36* (336, 208) [0; 2, 6, 8] 6, 7, 7, 8, 8

37 (1728, 31096) [0; 2, 3, 8] 2, 3, 8, 24

41 (960, 5719) [0; 2, 4, 6] 5, 6, 8, 10, 12

43 (672, 1254) [0; 2, 4, 8] 6, 7, 7, 7, 8, 8

46* (324, 69) [0; 2, 6, 18] 1, 1, 2, 6, . . . , 6︸ ︷︷ ︸
7

49 (1920, 240996) [0; 2, 4, 5] 4, 10, 15, 20

50 (588, 37) [0; 2, 6, 6] 1, 1, 6, 6, 12, 12, 12

55 (1296, 3490) [0; 2, 4, 6] 3, 12, 12, 12, 16

57 (1344, 11289) [0; 2, 4, 6] 6, 7, 8, 8, 12, 16

61 (1440, 4605) [0; 2, 4, 6] 2, 5, 6, 8, 8, 10, 10, 12

65 30721 [0; 2, 3, 8] 2, 3, 12, 24, 24

73 (1728, 46270) [0; 2, 4, 6] 2, 3, 4, 4, 4, 8, 8, 12, 12, 16

81* (1152, 157853) [0; 2, 4, 9] 9, . . . , 9︸ ︷︷ ︸
9

82 38882 [0; 2, 3, 8] 2, 8, 8, 16, 24, 24

85 40321 [0; 2, 3, 8] 8, 14, 18, 21, 24

91 (432, 686) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
21

97 38401 [0; 2, 4, 5] 4, 10, 15, 20, 24, 24

109 2592A [0; 2, 4, 6] 2, 3, 12, 12, 12, 12, 16, 16, 24

121 2880 [0; 2, 4, 6] 3, 5, 6, 8, 12, 12, 12, 15, 15, 15, 18
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Table 1: (continued)

Genus Automorphism Group Signature Jacobian Decomposition

129 10752 [0; 2, 3, 7] 3, 14, 14, 42, 56

145 6912 [0; 2, 3, 8] 2, 3, 8, 12, 24, 24, 24, 48

163 2592C [0; 2, 4, 8] 1, 2, 8, . . . , 8︸ ︷︷ ︸
8

, 16, . . . , 16︸ ︷︷ ︸
6

193* 5760 [0; 2, 3, 10] 5, 8, 15, 15, 15, 15, 30, 30, 30, 30

244* 11664 [0; 2, 3, 8] 2, 8, 8, 16, 24, 24, 36, 36, 36, 54

257 12288A [0; 2, 3, 8] 2, 3, 12, 24, . . . , 24︸ ︷︷ ︸
6

, 48, 48

325 15552 [0; 2, 3, 8] 2, 3, 8, 8, 16, 24, . . . , 24︸ ︷︷ ︸
6

, 48, 48, 48

433 5184 [0; 2, 6, 6] 1, 1, 2, 2, 3, 4, 6, . . . , 6︸ ︷︷ ︸
8

, 12, . . . , 12︸ ︷︷ ︸
31

Many more examples were found than appear in the paper. We provide tables
of all examples we found, not just those of the largest automorphism group order,
at [Paulhus and Rojas 15]. For genus up to 20, this is a complete list using this
technique for all curves with g0 = 0. For genus 21 –101, this is a complete list for
all curves with automorphism group larger than 4(g−1). For genus beyond 101 we
only list the curves found by strategic searching, and there may be other examples
for a given genus.

3.2. Intermediate cover examples. Using the technique from Section 2.2, we
obtain the following new examples. Notice that we found many more new genera
with this new technique.

Theorem 3.2. Let g ∈ {30, 32, 34, 35, 39, 42, 44, 48, 51, 52, 54, 58, 62–64, 67,
69, 71, 72, 79, 80, 89, 93, 95, 103, 105–107, 118, 125, 142, 154, 199, 211, 213}.
There is a completely decomposable Jacobian variety of dimension g. Moreover,
each one corresponds to the Jacobian variety of a curve obtained as a quotient by
H ≤ G of a curve of higher genus with the action of a group G.

Proof. We give an outline of the proof for one case, the rest follow similarly. Also
recall that in Section 2.2 we gave examples of several other cases, with more details.

Consider the group G = (1152, 5806) acting on a curve X of genus 73 with
signature [0; 2, 4, 8]. Then using techniques as in Theorem 3.1, JX decomposes
into 10 factors (each one a power of an elliptic curve),

JX ∼ E × E2 × E2 × E4 × E8 × E8 × E8 × E8 × E16 × E16.

The Schur index for all the irreducible C-characters is 1 and the first three terms
in the decomposition come from sums of pairs of irreducible C-characters of the
given degrees (again, by Proposition 2.2), while the remaining factors are all from
irreducible C-characters which are also irreducible Q-characters.

Using the technique described in Section 2.2, there is a non-normal subgroup H
of G of order 2 such that XH has genus 35 and has a completely decomposable
Jacobian. Using the inner product in (7), dimensions of the subspaces of the rep-
resentations corresponding to the first and third factor in JX fixed by H are all
0, while the rest are half their values in JX. The decomposition of the Jacobian
variety of the genus 35 curve is as follows, where Ei corresponds to the ith term in
the decomposition of JX above:

J(XH) ∼ E2 × E2
4 × E4

5 × E4
6 × E4

7 × E4
8 × E8

9 × E8
10.
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�

In Table 2 we give one example for each genus where we found an example
through intermediate covers (but not through group actions). We use the same
convention for labeling groups as in Table 1. Again, complete lists of data we
found are at [Paulhus and Rojas 15]. In this table we also include the genus of the
intermediate cover, the genus and automorphism group and signature for the larger
curve, the subgroup size and number for the corresponding subgroup H (labeled
as Magma does, and recall our convention of converting all groups to permutation
groups), and the decomposition of the quotient curve. For ease of notation, we
group all factors from (2) of the same dimension together, although they may not
be in that order, nor correspond to the order of the decomposition of the high genus
curve. For instance, if the decomposition is given as E2 ×E4 ×E2, we denote this
as 2, 2, 4.

There are some genera (up to 500) on Ekedahl and Serre’s list for which the
technique in Section 2.1 cannot identify a curve with completely decomposable
Jacobian, and which do not appear in Table 1. The set of such genera is {12, 18,
20, 23, 27, 40, 45, 47, 53, 217}. All these examples may be generated using our
second technique of intermediate covers from Proposition 2.4. We also collect this
data in Table 2. Again, our new examples are denoted with a ∗.

Table 2: Examples of curves with completely decomposable Jacobians in genus greater
than 10 using intermediate coverings.

Automorphism Subgroups Jacobian
g Large g Group Signature No., Order Decomposition
12 49 (288, 627) [0; 2, 2, 2, 6] 28, 4 1, . . . , 1︸ ︷︷ ︸

6

, 2, 2, 2

18 73 (1152, 5806) [0; 2, 4, 8] 35, 4 1, 1, 2, 2, 2, 2, 4, 4
20 82 38882 [0; 2, 3, 8] 13, 4 2, 2, 4, 6, 6
23 49 (256, 3066) [0; 2, 2, 2, 8] 9, 2 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸

10
27 55 (432, 537) [0; 2, 2, 2, 4] 6, 2 1, 2, 3, . . . , 3︸ ︷︷ ︸

8
30* 61 (720, 767) [0; 2, 6, 6] 5, 2 2, 2, 3, 3, 4, 5, 5, 6
32* 97 23046 [0; 2, 3, 12] 10, 3 2, 2, 4, 4, 4, 8, 8
34* 73 (432, 682) [0; 2, 2, 2, 6] 5, 2 1, 1, 2, . . . , 2︸ ︷︷ ︸

16
35* 73 (1152, 5806) [0; 2, 4, 8] 10, 2 1, 2, 4, 4, 4, 4, 8, 8
39* 81 (1152, 157853) [0; 2, 4, 9] 9, 2 4, . . . , 4︸ ︷︷ ︸

6

, 5, 5, 5

42* 129 3072F [0; 2, 3, 12] 11, 3 2, 4, . . . , 4︸ ︷︷ ︸
6

, 8, 8

44* 91 (432, 686) [0; 2, 2, 2, 12] 7, 2 1, 1, 2, · · · , 2︸ ︷︷ ︸
21

45 91 (432, 686) [0; 2, 2, 2, 12] 8, 2 1, 1, 1, 2, · · · , 2︸ ︷︷ ︸
21

47 97 38401 [0; 2, 4, 5] 5, 2 2, 4, 7, 10, 12, 12
48* 145 (1728, 13293) [0; 2, 6, 6] 12, 3 1, 1, 2, . . . , 2︸ ︷︷ ︸

7

, 4, . . . , 4︸ ︷︷ ︸
8

51* 101 24001 [0; 3, 3, 4] 3, 2 3, 12, 12, 12, 12
52* 109 2592A [0; 2, 4, 6] 7, 2 1, 1, 5, 5, 6, 6, 8, 8, 12
53 109 (1296, 2945) [0; 2, 6, 6] 8, 2 1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸

6

, 6, 6, 6, 6, 6

54* 109 (1296, 3498) [0; 2, 4, 12] 6, 2 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
8

, 8, 8

58* 244 11664 [0; 2, 3, 8] 14, 4 2, 2, 4, 6, 6, 8, 8, 8, 14
62* 257 12288B [0; 2, 3, 8] 35, 4 2, 4, 4, 6, 6, 8, 8, 12,12
63* 193 5760 [0; 2, 3, 10] 9, 3 1, 2, 5, 5, 5, 5, 10, 10, 10, 10
64* 325 3888 [0; 2, 6, 6] 28, 4 1, 3, . . . , 3︸ ︷︷ ︸

21
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Table 2: (continued)

Automorphism Subgroups Jacobian
g Large g Group Signature No., Order Decomposition

67* 145 (1728, 32233) [0; 2, 6, 6] 6, 2 1, 1, 2, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
9

69* 145 (1728, 32233) [0; 2, 6, 6] 9, 2 1, 1, 1, 2, 2, 2, 3, 3, 6, . . . , 6︸ ︷︷ ︸
9

71* 145 (1728, 13293) [0; 2, 6, 6] 8, 2 1, 1, 3, . . . , 3︸ ︷︷ ︸
7

, 6, . . . , 6︸ ︷︷ ︸
8

72* 325 15552 [0; 2, 3, 8] 22, 4 1, 1, 4, 5, . . . , 5︸ ︷︷ ︸
6

, 12, 12, 12

79* 163 2592D [0; 2, 4, 8] 6, 2 1, 3, 3, 4, 4, 8, . . . , 8︸ ︷︷ ︸
8

80* 163 2592C [0; 2, 4, 8] 5, 2 4, . . . , 4︸ ︷︷ ︸
8

, 8, . . . , 8︸ ︷︷ ︸
6

89* 193 5760 [0; 2, 3, 10] 3, 2 4, 5, 5, 5, 10, 15, 15, 15, 15
93* 193 2304 [0; 2, 2, 2, 3] 11, 2 1, 1, 1, 1, 2, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸

12

, 6, 8, 8, 8

95* 193 2304 [0; 2, 2, 2, 3] 12, 2 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8

103* 433 5184 [0; 2, 6, 6] 32, 4 1, 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
27

, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6

105* 433 5184 [0; 2, 6, 6] 49, 4 1, . . . , 1︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
18

, 3, 4, . . . , 4︸ ︷︷ ︸
13

, 6

106* 325 15552 [0; 2, 3, 8] 14, 3 1, 2, 2, 5, 8, . . . , 8︸ ︷︷ ︸
6

, 16, 16, 16

107* 433 5184 [0; 2, 6, 6] 39, 4 1, . . . , 1︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
18

, 3, 4, . . . , 4︸ ︷︷ ︸
13

, 6

118* 244 11664 [0; 2, 3, 8] 3, 2 1, 3, 3, 8, 11, 11, 18, 18, 18, 27
125* 257 12288B [0; 2, 3, 8] 6, 2 1, 4, 8, 8, 12, 12, 16, 16, 24, 24
142* 433 5184 [0; 2, 6, 6] 17, 3 1, 1, 2, . . . , 2︸ ︷︷ ︸

8

, 4, . . . , 4︸ ︷︷ ︸
31

154* 325 15552 [0; 2, 3, 8] 4, 2 1, 1, 3, 3, 8, 11, . . . , 11︸ ︷︷ ︸
6

, 24, 24, 24

161 325 15552 [0; 2, 3, 8] 5, 2 1, 4, 4, 8, 12, . . . , 12︸ ︷︷ ︸
6

, 24, 24, 24

199* 433 5184 [0; 2, 6, 6] 5, 2 1, 1, 2, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
31

211* 433 5184 [0; 2, 6, 6] 7, 2 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
7

, 6, . . . , 6︸ ︷︷ ︸
31

213* 433 5184 [0; 2, 6, 6] 9, 2 1, 1, 1, 2, 2, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 6, . . . , 6︸ ︷︷ ︸
31

217* 433 5184 [0; 2, 6, 6] 10, 2 1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 4, 4, 6, . . . , 6︸ ︷︷ ︸
31

3.3. Examples of families. Recall from the proof of Theorem 3.1 that the only
completely decomposable Jacobian varieties of dimension 91 discovered using the
group algebra technique are a one-dimensional family of curves (so using the group
algebra technique only, there is no curve with an automorphism group correspond-
ing to a dimension 0 family in genus 91 having a completely decomposable Jaco-
bian). There are several known examples of families of completely decomposable
Jacobians in low genus (see [Frediani et al. 15], [Lange and Rojas 12, Section 4],
[Paulhus 08]), and, as we mentioned in the introduction, in [Moonen and Oort 11]
the authors asked for examples of special subvarieties such that the generic point is
completely decomposable. Our techniques provide a way of finding families where
one can look for examples to answer their question.

Here we highlight the genera where we find a one-dimensional (or higher) family
of completely decomposable Jacobians of that genus. We elaborate on the question
in [Moonen and Oort 11] after the theorem.
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Theorem 3.3. Let g ∈ {11–19, 21–29, 31, 33–35, 37, 40, 41, 43–47, 49, 52, 53,
55, 57, 61, 65, 57, 69, 73, 82, 91, 93, 95, 97, 109, 129, 145, 193}. Then there is
a dimension one (or larger) family of completely decomposable Jacobians of curves
of genus g which can be found using the techniques from Sections 2.1 and 2.2.

Proof. Again, we only demonstrate with a couple of examples. The rest follow in
the same way via data listed in Table 3 for those genera found through the tech-
nique in Section 2.1, and Table 4 for those found through the technique in Section
2.2. In these tables, for each genus we only give an example of the largest automor-
phism group we found which leads to a completely decomposable Jacobian (and the
highest dimensional family, if that is not the same). Again, for genus greater than
20, we only searched groups of order greater than 4(g − 1), so there may be other
examples of higher dimensional families with completely decomposable Jacobians.
All other examples we found appear in the data at [Paulhus and Rojas 15]. For
completeness, we have added all examples for genus 3 through 10 curves in the Ap-
pendix, only including those corresponding to the action of the full automorphism
group [Ries 93]. This data includes many previously known examples.

There is a family of curves of genus 73 with the action of the group (432, 682)
with signature [0; 2, 2, 2, 6], see the data at [Paulhus and Rojas 15]. Since this curve
is completely decomposable, all quotients by corresponding subgroups H will also
be completely decomposable. In particular, this group has a subgroup of order 2
which gives a new example for genus 34.

There are several different group actions on curves of genus 49 giving one-
dimensional families of completely decomposable Jacobians. For instance, the
group (256, 3066) acts with signature [0; 2, 2, 2, 8] and has a subgroup of order 2
which forms a quotient of genus 23, and the group (288, 627) acting with signature
[0; 2, 2, 2, 6] has a subgroup of order 4 which forms a quotient of genus 12. �

Using notation from earlier in the paper, let G be a finite group acting on a curve
of genus g with signature m = [0; s1, . . . , sr], and generating vector θ = (c1, . . . , cr).
For a fixed pair (m, θ), by moving the branch points of the covering in P1 one obtains
an (r − 3)-dimensional family of such coverings, and a corresponding family of
Jacobians J (G,m, θ) of the same dimension. For references see [Frediani et al. 15]
or [Völklein 96].

Let Hg be the Siegel upper half space of complex g × g symmetric matrices
with positive definite imaginary part. The real symplectic group Sp(2g,R) acts
transitively on Hg by(

A B
C D

)
∗ Z = (A+ ZC)−1(B + ZD).

This action, when considering elements in Sp(2g,Z), identifies Riemann matrices
corresponding to isomorphic principally polarized abelian varieties ([Rodŕıguez 14],
[Birkenhake and Lange 04]). Hence Ag = Sp(2g,Z)\Hg is a complex analytic space
which parametrizes isomorphism classes of principally polarized abelian varieties of
dimension g. From the analytic point of view, it corresponds to the moduli space
of principally polarized abelian varieties over C of dimension g.

If a subvariety of Ag is the image of one orbit of an algebraic subgroup of
Sp(2g,R) under this action, then we say the subvariety is a special subvariety.
Special subvarieties have some interesting geometric properties. For instance, spe-
cial points, i.e., special subvarieties of dimension zero, correspond to varieties of
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CM-type, which are varieties with interesting endomorphism rings. For details, we
refer the reader to [Moonen and Oort 11] and [Frediani et al. 15].

Denote by Z(G,m, θ) the closure of the family J (G,m, θ) in Ag. It is a r − 3
dimensional subvariety of Ag. The goal is to determine if it is a special subvariety
of Ag. In [Frediani et al. 15, Thms. 1.4, 3.9, Lemma 3.8] there is a nice character-
ization of when Z(G,m, θ) is a special subvariety. Their criterion is as follows, if
JX ∈ J (G,m, θ) is one of the Jacobians in the family corresponding to one cover-
ing X → X/G ∼= P1, consider the symplectic representation ρ : G → Sp(2g,Z) of
G induced by the action of G in the lattice of JX, or equivalently induced by the
action of G in the first homology group H1(X,Z) (see [Behn et al. 13] for details).
Let HGg be the set of fixed points of G in Hg, and denote by N the dimension of the

irreducible component containing J (G,m, θ) in HGg . Both the isomorphism class
of ρ and the dimension N depend only on the fixed pair (m, θ) for G, not on the
particular element JX, nor the particular covering X → P1, of the family. If the
dimension N equals the dimension of J (G,m, θ), which is r − 3, then Z(G,m, θ)
is a special subvariety of Ag that is contained in the closure of the Torelli locus Tg,
and which intersects the (open) Torelli (or Jacobian) locus T 0

g non-trivially.
Given a pair (m, θ) for a fixed G, using [Behn et al. 13] one can find the dimen-

sion of HGg , although it is computationally expensive and it is not easy to find the
dimension of the specific irreducible component containing the family considered,
unless HGg is irreducible (which can be determined using Magma). Nevertheless,
useful code is provided in [Frediani et al. 15] which can compute the dimension N
for low genus examples.

Our Table 3 contains examples of families found using group actions, so we
can apply the criterion of [Frediani et al. 15] to determine if they correspond to
special subvarieties. We remark that these families could correspond to special
subvarieties even if they do not satisfy the criterion. Moreover, in Table 4, we give
examples of families of completely decomposable Jacobian varieties arising from
intermediate coverings, in which case the criterion of [Frediani et al. 15] cannot be
directly applied, since one has here X → X/H → X/G ∼= P1 where the last covering
of P1 is not (in general) Galois. It is a work in progress to adjust the criterion to
this situation.

We show with one example how the families on Table 3 correspond to special
subvarieties. Let G be the alternating group A4, acting on a curve of genus 4 with
signature m = [0; 2, 3, 3, 3]. We have then a one-dimensional family J of Jacobians.
Using [Behn et al. 13] we determine that the dimension of HG4 is also 1. Therefore,
according to [Frediani et al. 15], the closure Z of J is a special subvariety of A4

contained in T4 and such that Z ∩ T 0
4 6= ∅.

Using the group algebra decomposition (2), we conclude that the elements in J
(hence in HG4 ) decompose as E ×E3

1 (see the Appendix). Therefore this illustrates
a special case of [Moonen and Oort 11, Question 6.6]. Notice that E corresponds
to an irreducible representation ϕ of G such that G/ ker(ϕ) ∼= Z/3Z, hence E has
the action of the cyclic group of order 3 and thus it is fixed along the family. This
family is one of the special subvarieties found in [Frediani et al. 15, Table 2].

Table 3: Examples of families of completely decomposable curves found through the group
algebra method.

g Automorphism Group Signature Jacobian Decomposition
11 (24, 14) [0; 2, 2, 2, 2, 6] 1, 1, 1, 2, 2, 2, 2
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Table 3: (continued)

g Automorphism Group Signature Jacobian Decomposition
(48, 38) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4

13 (144, 183) [0; 2, 2, 2, 3] 2, 2, 3, 6
(48, 51) [0; 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 2, 2, 2, 2

15 (48, 48) [0; 2, 2, 4, 6] 1, 2, 3, 3, 3, 3
16 (36, 13) [0; 2, 2, 2, 2, 6] 1, 1, 2, . . . , 2︸ ︷︷ ︸

7
17 (192, 956) [0; 2, 2, 2, 3] 2, 3, 6, 6

(64, 211) [0; 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
6

19 (144, 109) [0; 2, 2, 2, 4] 1, 3, 3, 6, 6
(72, 49) [0; 2, 2, 2, 2, 2] 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸

8
25 (288,847) [0; 2, 2, 2, 3] 2, 2, 3, 4, 6, 8
28 (324,124) [0; 2, 2, 2, 3] 2, 2, 2, 4, 6, 6, 6
31 (144, 154) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸

6
33 (384,18136) [0; 2, 2, 2, 3] 3, 3, 3, 8, 8, 8
37 (432,748) [0; 2, 2, 2, 3] 2, 2, 2, 3, 4, 6, 6, 12
49 (576, 8653) [0; 2, 2, 2, 3] 2, 2, 3, 3, 6, 6, 9, 9, 9
55 (432, 537) [0; 2, 2, 2, 4] 1, 3, 3, 6, . . . , 6︸ ︷︷ ︸

8
61 (288, 629) [0; 2, 2, 2, 12] 1, 2, . . . , 2︸ ︷︷ ︸

6

, 4, . . . , 4︸ ︷︷ ︸
12

65 (768, 1090018) [0; 2, 2, 2, 3] 2, 3, 3, 3, 6, 8, . . . , 8︸ ︷︷ ︸
6

73 (576, 4322) [0; 2, 2, 2, 4] 1, 2, 2, 4, . . . , 4︸ ︷︷ ︸
9

, 8, 8, 8, 8

82 (972, 474) [0; 2, 2, 2, 3] 2, 2, 2, 4, 6, . . . , 6︸ ︷︷ ︸
6

, 12, 12, 12

91 (432, 686) [0; 2, 2, 2, 12] 1, 2, 2, 2, 4, . . . , 4︸ ︷︷ ︸
21

97 (1152, 157665) [0; 2, 2, 2, 3] 2, 2, 3, 3, 3, 6, 6, 6, 6, 8, 8, 8, 8, 12, 16
109 (1296, 2940) [0; 2, 2, 2, 3] 2, 2, 2, 3, 4, 6, . . . , 6︸ ︷︷ ︸

8

, 12, 12, 12, 12

129 1536 [0; 2, 2, 2, 3] 2, 3, 3, 3, 6, 6, 6, 6, 6, 8, 8, 12, . . . , 12︸ ︷︷ ︸
6

145 (1728, 46119) [0; 2, 2, 2, 3] 2, 2, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
8

, 12, . . . , 12︸ ︷︷ ︸
7

193 2304 [0; 2, 2, 2, 3] 2, 2, 3, 3, 3, 6, 6, 6, 6, 8, . . . , 8︸ ︷︷ ︸
12

, 12, 16, 16, 16

Table 4: Families of completely decomposable curves found through the intermediate cover
method.

Automorphism Subgroup Jacobian
g Large g Group Signature No., Order Decomposition
12 49 (288, 627) [0; 2, 2, 2, 6] 29, 4 1, 1, 1, 1, 2, 2, 2, 2
14 145 (1728, 46119) [0; 2, 2, 2, 3] 168, 8 1, . . . , 1︸ ︷︷ ︸

11

, 3

18 145 (1728, 46119) [0; 2, 2, 2, 3] 152, 8 1, . . . , 1︸ ︷︷ ︸
11

, 2, 2, 3

21 129 1536 [0; 2, 2, 2, 3] 128, 6 1, . . . , 1︸ ︷︷ ︸
7

, 2, . . . , 2︸ ︷︷ ︸
7

22 193 2304 [0; 2, 2, 2, 3] 132, 8 1, . . . , 1︸ ︷︷ ︸
7

, 2, . . . , 2︸ ︷︷ ︸
6

, 3

23 49 (256, 3066) [0; 2, 2, 2, 8] 9, 2 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
10

24 49 (288, 627) [0; 2, 2, 2, 6] 8, 2 1, . . . , 1︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
8

26 109 (1296, 2940) [0; 2, 2, 2, 3] 22, 4 1, . . . , 1︸ ︷︷ ︸
7

, 2, 2, 2, 2, 2, 3, 3, 3

27 55 (432, 537) [0; 2, 2, 2, 4] 6, 2 1, 2, 3, . . . , 3︸ ︷︷ ︸
8

29 97 (1152, 157665) [0; 2, 2, 2, 3] 13, 3 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
8

, 4, 6
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Table 4: (continued)

Automorphism Subgroup Jacobian
g Large g Group Signature No., Order Decomposition
33 193 2304 [0; 2, 2, 2, 3] 74, 6 1, . . . , 1︸ ︷︷ ︸

7

, 2, . . . , 2︸ ︷︷ ︸
13

34 73 (432, 682) [0; 2, 2, 2, 6] 5, 2 1, 1, 2, . . . , 2︸ ︷︷ ︸
16

35 145 (1728, 46119) [0; 2, 2, 2, 3] 54, 4 1, . . . , 1︸ ︷︷ ︸
10

, 2, 2, 2, 3, 4, 4, 4, 4

40 82 (972, 474) [0; 2, 2, 2, 3] 4, 2 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
6

, 6, 6, 6

41 129 1536 [0; 2, 2, 2, 3] 15, 3 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
7

, 4, . . . , 4︸ ︷︷ ︸
6

43 193 2304 [0; 2, 2, 2, 3] 34, 4 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 6, 8
44 91 (432, 686) [0; 2, 2, 2, 12] 7, 2 1, 1, 2, · · · , 2︸ ︷︷ ︸

21
45 91 (432, 686) [0; 2, 2, 2, 12] 8, 2 1, 1, 1, 2, · · · , 2︸ ︷︷ ︸

21
46 109 (1296, 2940) [0; 2, 2, 2, 3] 3, 2 1, 1, 1, 2, · · · , 2︸ ︷︷ ︸

8

, 3, 6, 6, 6, 6

47 97 (1152, 157665) [0; 2, 2, 2, 3] 10, 2 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 4, 4, 4, 6, 8
52 109 (1296, 2940) [0; 2, 2, 2, 3] 5, 2 1, 1, 1, 2, 2, 3, . . . , 3︸ ︷︷ ︸

7

, 6, 6, 6, 6

53 109 (1296, 2940) [0; 2, 2, 2, 3] 6, 2 1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
8

, 6, 6, 6, 6

57 193 2304 [0; 2, 2, 2, 3] 15, 3 1, 1, 1, 2, . . . , 2︸ ︷︷ ︸
16

4, 6, 6, 6

67 145 (1728, 46119) [0; 2, 2, 2, 3] 11, 2 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 6, . . . , 6︸ ︷︷ ︸
7

69 145 (1728, 46119) [0; 2, 2, 2, 3] 12, 2 1, 1, 1, 1, 2, 3, . . . , 3︸ ︷︷ ︸
7

, 6, . . . , 6︸ ︷︷ ︸
7

93 193 2304 [0; 2, 2, 2, 3] 11, 2 1, 1, 1, 1, 2, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8

95 193 2304 [0; 2, 2, 2, 3] 12, 2 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, . . . , 4︸ ︷︷ ︸
12

, 6, 8, 8, 8

4. Complications

The techniques described above do not necessarily yield the finest decomposi-
tion. In (2), it is possible that the Bi may decompose further. Thus there may be
examples using a finer decomposition which fill other gaps in Ekedahl and Serre’s
list. Moreover, it is also possible that Bi ∼ Bj even if i 6= j in (2). In this case, we
are exhibiting more factors than is necessary up to isogeny.

Computationally, finding automorphism groups and signatures in high genus is
resource heavy. The memory requirements for the Magma command LowIndexNormalSubgroups

limit our ability to use this command to find other examples in higher genus, or to
fill remaining gaps using the intermediate cover technique. For example, because
of computational constraints we could not find examples in genus 649 and 1297 as
Ekedahl and Serre do. We are optimistic that, given sufficient computational re-
sources, the techniques we describe above could produce numerous additional new
examples.

5. Appendix

Here we provide all examples of families of curves for genus 3–10 which have
completely decomposable Jacobians. These were found by searching all Breuer’s
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data for these genera, and then removing those groups that were not the full auto-
morphism group for the given family [Ries 93]. Some of the examples in this table
were known before [Frediani et al. 15].

Table 5: Family of completely decomposable curves found through group algebra method
for genus 3-10.

g Automorphism Group Signature Jacobian Decomposition
3 (4, 2) [0; 2, 2, 2, 2, 2, 2] 1, 1, 1

(6, 1) [0; 2, 2, 2, 2, 3] 1, 2
(8, 2) [0; 2, 2, 4, 4] 1, 1, 1
(8, 5) [0; 2, 2, 2, 2, 2] 1, 1, 1
(12, 4) [0; 2, 2, 2, 6] 1, 2
(16, 11) [0; 2, 2, 2, 4] 1, 2
(16, 13) [0; 2, 2, 2, 4] 1, 2
(18, 3) [0; 2, 2, 2, 2, 2] 1, 2
(24, 12) [0; 2, 2, 2, 3] 3

4 (8, 3) [0; 2, 2, 2, 2, 4] 1, 1, 2
(12, 3) [0, 2, 3, 3, 3] 1, 3
(12, 4) [0; 2, 2, 3, 6] 2, 2
(12, 4) [0; 2, 2, 2, 2, 2] 1, 1, 2
(24, 12) [0; 2, 2, 2, 4] 1, 3
(36, 10) [0; 2, 2, 2, 3] 2, 2

5 (8, 5) [0; 2, 2, 2, 2, 2, 2] 1, 1, 1, 1, 1
(12, 4) [0; 2, 2, 2, 2, 3] 1, 2, 2
(16, 3) [0; 2, 2, 4, 4] 1, 2, 2
(16, 11) [0; 2, 2, 2, 2, 2] 1, 1, 1, 2
(16, 11) [0; 2, 2, 2, 2, 2] 1, 2, 2
(16, 14) [0; 2, 2, 2, 2, 2] 1, 1, 1, 1, 1
(24, 8) [0; 2, 2, 2, 6] 1, 2, 2
(24, 14) [0; 2, 2, 2, 6] 1, 2, 2
(32, 27) [0; 2, 2, 2, 4] 1, 2, 2
(32, 28) [0; 2, 2, 2, 4] 1, 2, 2
(32, 43) [0; 2, 2, 2, 4] 1, 4
(48, 48) [0; 2, 2, 2, 3] 2, 3

6 (12, 4) [0; 2, 2, 2, 2, 6] 1, 1, 2, 2
(24, 12) [0; 2, 2, 3, 4] 3, 3

7 (8, 5) [0; 2, 2, 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 1, 1
(16, 11) [0; 2, 2, 2, 2, 4] 1, 1, 1, 2, 2
(18, 4) [0; 2, 2, 2, 2, 3] 1, 2, 2, 2
(24, 13) [0; 2, 2, 3, 6] 1, 3, 3
(24, 14) [0; 2, 2, 2, 2, 2] 1, 1, 1, 2, 2
(32, 43) [0; 2, 2, 2, 8] 1, 2, 4
(36, 10) [0; 2, 2, 2, 6] 1, 2, 4
(48, 38) [0; 2, 2, 2, 4] 1, 2, 4
(48, 48) [0; 2, 2, 2, 4] 1, 3, 3

8 (24, 12) [0; 2, 3, 3, 4] 2, 3, 3
9 (16, 11) [0; 2, 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 2, 2

(16, 14) [0; 2, 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 1, 1, 1, 1
(24, 14) [0; 2, 2, 2, 2, 3] 1, 2, 2, 2, 2
(32, 6) [0; 2, 2, 4, 4] 1, 2, 2, 4
(32, 27) [0; 2, 2, 2, 2, 2] 1, 1, 1, 2, 2, 2
(32, 34) [0; 2, 2, 2, 2, 2] 1, 2, 2, 2, 2
(32, 43) [0; 2, 2, 2, 2, 2] 1, 1, 1, 2, 4
(32, 46) [0; 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 2, 2
(32, 49) [0; 2, 2, 2, 2, 2] 1, 1, 1, 1, 1, 4
(48, 38) [0; 2, 2, 2, 6] 1, 2, 2, 4
(48, 43) [0; 2, 2, 2, 6] 1, 2, 2, 2, 2
(48, 48) [0; 2, 2, 2, 6] 3, 3, 3
(64, 73) [0; 2, 2, 2, 4] 1, 2, 2, 2, 2
(64, 128) [0; 2, 2, 2, 4] 1, 2, 2, 4
(64, 134) [0; 2, 2, 2, 4] 1, 2, 2, 4
(64, 135) [0; 2, 2, 2, 4] 1, 2, 2, 4
(64, 138) [0; 2, 2, 2, 4] 1, 2, 2, 4
(64, 140) [0; 2, 2, 2, 4] 1, 2, 2, 4
(64, 177) [0; 2, 2, 2, 4] 1, 4, 4
(96, 193) [0; 2, 2, 2, 3] 2, 3, 4
(96, 227) [0; 2, 2, 2, 3] 3, 3, 3

10 (36, 10) [0; 2, 2, 3, 6] 2, 2, 2, 4
(36, 13) [0; 2, 2, 3, 6] 2, 2, 2, 2, 2
(36, 10) [0; 2, 2, 2, 2, 2] 1, 1, 2, 2, 4
(36, 13) [0; 2, 2, 2, 2, 2] 1, 1, 2, 2, 2, 2
(48, 29) [0; 2, 2, 2, 8] 1, 2, 3, 4
(72, 15) [0; 2, 2, 2, 4] 1, 3, 6
(72, 40) [0; 2, 2, 2, 4] 2, 4, 4
(72, 43) [0; 2, 2, 2, 4] 1, 3, 6
(108, 17) [0; 2, 2, 2, 3] 2, 2, 6
(108, 40) [0; 2, 2, 2, 3] 2, 2, 2, 4



20 J. PAULHUS AND A. M. ROJAS

References

[Akbas and Singerman 90] M. Akbas and D. Singerman., ‘The normalizer of Γ0(N) in PSL(2,R)’,
Glasg. Math. J., 32, no 3. (1990) 317–327.
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