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Abstract. The automorphism group of a Riemann surface is an important

object in a number of different mathematical fields. An algorithm of Thomas

Breuer determines all such groups for a fixed genus given a complete classifi-
cation of groups up to a sufficiently large order, but data generated from this

algorithm did not include the generators of the corresponding monodromy

group, another crucial piece of information for researchers. This paper de-
scribes modifications the author made to Breuer’s code to add the generators,

as well as other new code to compute additional information about a given

Riemann surface. Data from this project has been incorporated into the L-
functions and Modular Forms Database (http://www.lmfdb.org) and we also

describe the relevant data which may be found there.

1. Introduction

Groups acting on Riemann surfaces are important to a range of mathematical
topics from the Galois theory of extensions of C(z) [Völklein, 1996], to Jacobian
variety decompositions [Lange and Recillas, 2004],[Paulhus, 2008], to Galois covers
of the projective line corresponding to Shimura varieties [Frediani et al., 2015], to
questions about indecomposable rational functions [Fried, 1973]. Most of these
topics utilize the generators of the monodromy group of the covering corresponding
to the mapping X → X/G from a Riemann surface X to the orbit space of X by
the group G acting on it.

Breuer created an algorithm and wrote computer code to determine all groups
acting on Riemann surfaces of a given genus [Breuer, 2000]. He ran the code up to
genus 48, and recorded the groups along with limited information about the rami-
fication of the mapping X → X/G. Within his code, generators of the monodromy
group were also computed, but not recorded. We added functionality to Breuer’s
code to fully compute these generators, and wrote new code to compute additional
information about Riemann surfaces. As this data will aid other researchers, we
are creating a publicly visible, easily accessible database containing this data.

Enter the L-functions and Modular Forms Database (LMFDB), a huge database
of mathematical objects. As an established database with a strong infrastructure,
LMFDB is an ideal location to post this data. Part of its goal is to provide oppor-
tunities for unexpected connections between mathematical concepts. This paper
describes the modifications we made to Breuer’s code, as well as additional compu-
tations we use to generate data on LMFDB (such as which actions correspond to
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2 J. PAULHUS

full automorphism groups, and which correspond to hyperelliptic curves). The rel-
evant code may be found at http://github.com/jenpaulhus/group-actions-RS
and the database is at http://www.lmfdb.org/HigherGenus/C/Aut.

Section 2 is an overview of the necessary mathematical background on groups
acting on Riemann surfaces, and in Section 3 we describe the theoretical underpin-
nings of the original code of Breuer. In Section 4 we explain the new mathematical
information added to the data and discuss the organization of the data on LMFDB.
Finally, in Section 5 we enumerate planned future additions to the database.

2. Background on Riemann Surfaces

Let X be a compact Riemann surface of genus g ≥ 2 (also referred to as a
“curve”), and let G =Aut(X), the group of biholomorphic maps from X to itself.
It is well known that this group is finite and bounded in size by 84(g− 1). There is
a natural mapping φ : X → Y = X/G where Y is the orbit space of X under the
action of G (φ sends x ∈ X to the orbit of x under the action of G), and g0 denotes
the genus of the quotient Y . It is possible that this mapping branches at several
points of Y , say on a set B ⊂ Y of size r. Letting φ−1(B) ⊂ X be the inverse image
of these points, the mapping from X − φ−1(B) to Y − B is a degree d covering
for some positive integer d. For details on the covering space theory used in the
paper, we recommend [Lee, 2011, Chapters 11 and 12]. For our specific situation,
we recommend [Fried, 1980] or [Breuer, 2000].

Fix a base point y0 ∈ Y − B. Then φ−1(y0) consists of d points in X − φ−1(B),
say φ−1(y0) = {x1, . . . , xd} ⊂ X. Now consider a loop starting at y0 and traveling
once around one branch point in B. For each element xi in φ−1(y0) this loop lifts
uniquely to a path in X which starts at xi and ends at some xj ∈ φ−1(y0), thus
defining a permutation on the d elements of φ−1(y0): send i to the number of the
endpoint of the corresponding lift starting at xi. There is one such permutation for
each element of B and these r permutations induce a map ρ : π1(Y − B, y0) → Sd
where Sd is the symmetric group on d elements, and the image of ρ is called the
geometric monodromy group which is isomorphic to Aut(X) in the case of Galois
covers. The order of each permutation corresponding to a loop around one element
of B is denoted mi for 1 ≤ i ≤ r. When X and Y are connected, the image of ρ is
a transitive subgroup of Sd.

The universal cover of a compact Riemann surface is the upper half plane H =
{z ∈ C | Im(z) > 0} which has automorphism group PSL(2,R), and so X may
be described as the orbit space of H by a torsion free subgroup of Aut(H) (see
[Breuer, 2000, Theorem 3.9] or [Jones and Singerman, 1987, 4.19.8]). Call that
torsion free subgroup K. It is isomorphic to π1(X,x0).

Similarly, Y is equivalent to the orbit space of H by a subgroup Γ of PSL(2,R)
called a Fuchsian group. These Fuchsian groups have an explicit presentation
[Breuer, 2000, Theorem 3.2]:

(1) Γ = 〈α1, β1, . . . , αg0 , βg0 , γ1, . . . , γr |
g0∏
i=1

[αi, βi]

r∏
j=1

γj = 1, γ
mj

j = 1〉

where [αi, βi] is the commutator of αi and βi. The list of non-negative integers
[g0;m1, . . . ,mr] is called the signature of Γ and is uniquely determined for each
Fuchsian group. The action of Γ on H induces an action of Γ/K on H/K, so

http://github.com/jenpaulhus/group-actions-RS
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G ∼= Γ/K. As such we have an exact sequence

(2) 1→ K
ι−→ Γ

η−→ G→ 1.

Then, G = Aut(X) may also be defined as the image of a surface kernel epimor-
phism, a surjection η : Γ→ G. Observe that different surface kernel epimorphisms
may exist for fixed groups Γ and G so to classify actions it is not sufficient to
only give the group and signature. We also need to describe the map η via, say,
a description of where η sends the generators. Due to the structure of Γ, the
group G is completely defined by 2g0 hyperbolic generators a1, b1, . . . , ag0 , bg0 and
r elliptic generators c1, . . . , cr such that the ci have order mi and the product∏g0
i=1[ai, bi]

∏r
j=1 cj = 1G where 1G is the identity element of G. We call this list

of 2g0 + r generators of G a generating vector.

Conversely, suppose G is any transitive subgroup of some symmetric group Sd
with 2g0 + r generators {a1, b1, . . . , ag0 , bg0 , c1, . . . , cr} such that the ci have order
mi and

∏g0
i=1[ai, bi]

∏r
j=1 cj = 1G. We say such a group has product one generators,

and a set of 2g0 + r generators is a product one generator. Then any surjection
η : Γ → G defined as η(αi) = ai, η(βi) = bi, and η(γi) = ci has a corresponding
kernel K, and G acts on the compact Riemann surface X defined as the orbits of
K acting on H.

Hence there is a one-to-one correspondence between surjective maps η : Γ → G
with ker(η) a torsion free group and finite groups which have product one gener-
ators. This is the beautiful existence theorem of Riemann (really a generalization
of it) and it gives a way to translate the topological language of ramified coverings
to the world of generators of finite groups. There are several very good sources
on Riemann’s existence theorem, particularly [Fried, 1980]. For a brief survey with
generalizations and historical perspectives, see [Harbater, 2015]. The topic is also
treated briefly in [Miranda, 1995, pg. 90-94], or in relation to function fields and
the Inverse Galois Problem in [Völklein, 1996].

As with most mathematical objects, many unequal surface kernel epimorphisms
exhibit identical behaviors. For example, relabeling the elements of φ−1(y0) (or re-
ordering the ci) should not constitute creating a “new” action. There are a number
of different equivalence relations that may be placed on the surface kernel epimor-
phisms and we must make choices about which equivalence relation to classifying
group actions up to in the database. For more information on classifications of
automorphism groups of Riemann surfaces up to other equivalence classes see Sec-
tions 4 and 5. Breuer’s algorithm computes epimorphisms up to an equivalence
relation which is slightly weaker than topological or conformal equivalence, mean-
ing two distinct group actions in his data may actually be topologically (or even
conformally) equivalent.

Let G be a finite group which is the image of a surface kernel epimorphism
η : Γ→ G, with [g0;m1, . . . ,mr] the signature of Γ. We denote by C = (C1, . . . , Cr)
a list of r conjugacy classes in G (not necessarily distinct) each containing elements
of order mi. Define S to be the set {(s1, . . . , sr) : si ∈ Ci}. Then G acts on S
by component-wise conjugation called simultaneous conjugation. We note for later
that this is precisely the action of the inner automorphisms of G on the generating
vectors.
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The properties of a tuple in S being a product one generator are invariant under
simultaneous conjugation. In the special case when these tuples are generating
vectors, any two vectors in the same orbit under simultaneous conjugation represent
conformally equivalent actions in the Riemann surface (although the converse is not
always true). This follows from the definition of conformal equivalence (see Section
5.2) and the fact that conjugation is an element of Aut(G). We classify our actions
up to simultaneous conjugation.

Given a Riemann surface X of genus g, a group G acting on X, a tuple C =
(C1, . . . , Cr) of conjugacy classes of G, and a generating vector (s1, . . . , sr) with si
in Ci, then the tuple (g,G, C) is called a refined passport [Sijsling and Voight, 2014]
(alternatively that X is of ramification type (g,G, C) [Magaard et al., 2002]). A
passport is a similar tuple of information, but the conjugacy classes are only consid-
ered in Sd, so the actions are only classified up to the cycle type of the generators
of G.

3. Breuer’s Code

Breuer’s contribution to this topic was to devise an algorithm to generate a
list of all groups and corresponding signatures for which there is a surface kernel
epimorphism η : Γ → G for a fixed genus. We only give a brief overview of his
algorithm here (see [Breuer, 2000] for more details).

Breuer’s algorithm first generates a list of all possible signatures for Fuchsian
groups Γ for a given genus g and given order n of the automorphism group, using
combinatorial restrictions on possible mi values, as well as the Riemann-Hurwitz
formula.

Next the algorithm searches the small group database in [GAP, 2006] and uses
group theoretic results to construct a list of groups G of order n which could have
one of the determined admissible signatures for that n. If a group of order n
does not have elements of orders corresponding to the values in the signature, it is
removed from the list of potential automorphism groups.

Finally, the algorithm determines which possible groups G satisfy the condition
that there is a surjective morphism η : Γ → G. This step in the algorithm uti-
lizes several different group theoretic results concerning the structure of conjugacy
classes. The algorithm first attempts to show no such surjection exists. It deter-
mines all possible lists of conjugacy classes C = (C1, . . . , Cr) such that the order of
elements in Ci is mi (i.e., potential refined passports for a given genus and group).
Breuer then computes the size of HomC(g0, G), the set of homomorphisms from
the Fuchsian group corresponding to the given signature to the group G, using the
following theorem.

Theorem 3.1 (Theorem 3, [Jones, 1995]). With C = (C1, . . . , Cr) as above,

|HomC(g0, G)| = |G|2g0−1
∑

χ∈Irr(G)

χ(1)2−2g−r
r∏
i=1

∑
σi∈Ci

χ(σi).

When this value is 0, there cannot be a surface kernel epimorphism for that refined
passport. In the case where g0 = 0 a result in [Scott, 1977, Theorem 1] gives a
sufficient condition on the irreducible characters of a group G to show there is not
a surjective homomorphism η : Γ→ G.

Conversely, to show there is an epimorphism η : Γ → G, a specific generating
vector defining the particular surface kernel epimorphism must be found (as the
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images in G of αi, βi, γj from (1) under the mapping η). A brute search of all
possible generating vectors for a given refined passport is not feasible, especially
for large signatures or large groups.

Instead Breuer uses the following proposition to quickly generate one element of
each orbit under the action of simultaneous conjugation.

Proposition 3.2 (Lemma 15.27, [Breuer, 2000]). Fix elements σi ∈ Ci for each
1 ≤ i ≤ r. Then the following set T gives us precisely one representative for each
orbit of the action of G on S = {(s1, . . . , sr) : si ∈ Ci} by simultaneous conjugation:

T = {(σ1, σb22 , . . . , σbrr ) : bi ∈ R(b1, . . . , bi−1) for 2 ≤ i ≤ r}
where R(b1, . . . , bi−1) is a set of representatives of the double coset

CG(σi)\G/CG(σ1, σ
b2
2 , . . . , σ

bi−1

i−1 ),

defined iteratively and where CG(g1, g2, . . . , gk) means the intersection of the cen-
tralizers of gi ∈ G for 1 ≤ i ≤ k.

Each element of T is tested to see if it is a product one generator. Breuer did
not record these generating vectors in his original data, though. His goal was to
list group and signature pairs only.

4. New additions

As mentioned above, one way to fully classify group actions on Riemann surfaces,
is to produce a generating vector for each action. We converted Breuer’s code to
the computer algebra language Magma [Bosma et al., 1997] to align the code with
other programs written by the author. We also added functionality which, given
a group and signature, outputs the generating vector(s) for each refined passport
up to simultaneous conjugation, generated via Proposition 3.2 (see [Paulhus, 2015],
specifically the file genvectors.mag). With this code we do not need to reproduce
all of Breuer’s program. We use his already generated group and signature pairs as
a starting point, and then add the generating vectors using the modified version of
his code.

There is a software package in GAP called MapClass, which, among other com-
putations, finds the generating vectors given a group and list of conjugacy classes
corresponding to a refined passport [James et al., 2012]. Quotients of all triangle
groups (actions such that g0 = 0 and r = 3 or 4) acting on surfaces of genus up
to 101, giving one generating vector per group and signature pair may be found at
[Conder, 2007]. We also note that lists of actions with monodromy up to genus 21
were independently computed and posted online [Karbas and Nedela, 2013].

4.1. Full Actions. One important piece of information which is not determined
in Breuer’s original code is whether the group action described is the full automor-
phism group for the family of curves with corresponding data. Suppose we have an
exact sequence

1→ K
ι−→ Γ

η−→ G→ 1

as in (2), and a corresponding generating vector from our modified version of
Breuer’s code. It is possible that there is some group H, Fuchsian group Γ0 so
that G < H, a mapping j : Γ→ Γ0, and an exact sequence

1→ K
ιo−→ Γ0

η0−→ H → 1
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so that η = η0 ◦ j. In this case, the generic element of this family of Riemann
surfaces has automorphism group H and signature that of Γ0.

In [Ries, 1993] there are conditions for determining exactly when this situation
occurs. (Identical results were independently discovered in [Bujalance et al., 2003].)
Given G and Γ, the paper also describes explicitly how to compute H and Γ0. The
cases where G�H are covered in [Ries, 1993, Theorem pg. 390], while the remaining
cases are covered in Table 1 and Table 2 of that paper. First, the signature of Γ
must match one of only a handful of signatures for which this scenario can happen.
For example, if g0 = 0 and there are more than 4 branch points, the given group G is
always the full automorphism group of the generic point of the family (η in this case
never satisfies the conditions outlined in [Ries, 1993]). In the cases where G �H,
if the signature is one of the few that might lead to a larger automorphism group
there must also exist an element of the automorphism group of G that behaves in
a certain way on the generating vector corresponding to the action η.

We have written code [Paulhus, 2016] which takes the output of the modified
Breuer program and determines if the mapping η defined by a generating vector
satisfies one of the conditions outlined in Ries. When such an example is found,
the group H and signature of Γ0 are also recorded. One caveat: the code only
determines the group H and signature of Γ0, it does not determine exactly which
refined passport (if there is more than one) the original group G and signature
correspond to. This should be possible to determine using information in the proof
of Theorem pg. 390 in [Ries, 1993].

In the special case when the signature of the action is [0; k, k, k] or [0; k, k, k, k],
we must determine if there exists an automorphism of G which acts in a certain
way on a generating vector up to applying an element of Aut+(Γ) to the elements
of the generating vector, where Aut+(Γ) is orientation preserving automorphisms
of Γ. In the two cases when this happens, g0 = 0 so the group Aut+(Γ) is the Artin
braid group. This group is an infinite (but finitely generated) group generated by
Q1, . . . , Qr−1 where Qi is the mapping sending one generating vector (s1, s2, . . . , sr)
to (s1, . . . , si−1, si+1, s

−1
i+1sisi+1, si+2, . . . , sr) [Magnus et al., 1966, Section 3.7]. We

call two generating vectors which are equivalent up to the action of this group braid
equivalent.

Even though the braid group is infinite, the orbit of a given generating vector
under the action of the elements of the braid group is finite (since the group G
is finite there are only a finite number of generating vectors). To exhaustively
determine whether the action corresponds to the full group, we need to generate
the whole orbit of a given generating vector and test if there is an element of Aut(G)
which acts on one of the generating vectors in that orbit in such a way to satisfy
the conditions as described in Ries’s paper. To do this, given a generating vector
and all cycles of it (or permutations if the group is abelian), we apply the braids
Q1, Q2 (and Q3 in the case of [0; k, k, k, k]) to the list of generating vectors and test
all of the elements in this list against the condition set out in [Ries, 1993, Theorem
pg. 390]. If we find an automorphism satisfying the conditions in this theorem, we
have a candidate for the full automorphism group. If not, we apply the braids to
the new larger set and repeat the process. Eventually the whole orbit is generated
(if it doesn’t find, along the way, a generating vector in the orbit which satisfies the
condition mentioned above) and the program will terminate since the orbit is finite.
If it terminates without finding a generating vector satisfying the conditions, the
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action represented by the initial generating vector must be the full automorphism
group.

4.2. Special Properties. Once we determine whether an action represents the full
automorphism group, we compute additional information connected to the given
refined passports. For example, Riemann surfaces described by these actions might
be hyperelliptic curves or cyclic trigonal curves. A hyperelliptic curve of genus g
is defined by the presence in its automorphism group of a central involution with
2g+2 fixed points, while a cyclic trigonal curve of genus g is defined by the presence
of an automorphism of order 3 which fixes g + 2 points. Using [Swinarski, 2018],
given a generating vector we compute the number of fixed points of a given auto-
morphism (also see [Breuer, 2000, Lemma 10.4]), and then determine if the curve is
hyperelliptic or cyclic trigonal. The code also computes the hyperelliptic involution
or trigonal automorphism, which we include in the database.

Work of the author gives a method to use the automorphism group of a curve
(and the generating vectors of the action) to produce a decomposition of its Jacobian
variety [Paulhus, 2008]. The code to implement this method may be found at
[Paulhus and Rojas, 2016] and we use that code on our compiled list of generating
vectors. An entry such as E×E3×A4×A2

5 in the database means the decomposition
consists of four factors: an elliptic curve, three isogenous copies of (possibly) another
elliptic curve, one dimension four abelian variety, and two isogenous copies of a
dimension five abelian variety. Each factor corresponds to a particular irreducible
C-representation of G and we also record the corresponding irreducible C-character
as determined by Magma’s character table for the group.

While generating vectors themselves are enough to classify group actions on Rie-
mann surfaces, the equation(s) for the curves in a given family are valuable to know
as well. Determining an equation for a curve given an automorphism group and
signature is, in general, a very hard problem. Equations are known for hyperelliptic
curves [Shaska, 2003], genus 3 curves with automorphisms [Magaard et al., 2002],
and genus 4-7 curves with “large” automorphism groups (the size of the automor-
phism group is at least 4(g − 1)) [Swinarski, 2018]. We added all these equations
to the data with one small exception. In [Shaska, 2003] the equations are classified
up to passports, not up to refined passports (the cycle structure of the generating
vectors instead of the conjugacy classes in G). In two cases (if G ∼= C2×C2, and if
G ∼= C4×C2 and the quotient of G by the hyperelliptic involution is C2×C2) there
is more than one equation listed in [Shaska, 2003] but in our data there are distinct
refined passports which are in the same passport. The author does not know a way
to determine which equation(s) correspond to which refined passport.

4.3. Equivalence Relations. As we mentioned earlier, distinct generating vectors
may well produce actions which are the same up to certain equivalence relations.
Breuer’s code already only produces actions up to simultaneous conjugation, but
we also compute equivalence classes for two other equivalence relations.



8 J. PAULHUS

Two actions η1 and η2 are topologically equivalent if there exists an ω ∈ Aut(G)
and φ ∈ Aut+(Γ) so that the following diagram commutes [Broughton, 1991].

Γ
η1−−−−→ Gyφ yω

Γ
η2−−−−→ G

.

Notice this means that η2 = ω ◦η1 ◦φ−1 where φ is an element of Aut+(Γ) and ω ∈
Aut(G). As such, two actions are topologically equivalent precisely when they are in
the same orbit under the action of Aut(G)×Aut+(Γ) [Broughton, 1991, Proposition
2.2]. This last statement translates the definition of topological equivalence to an
algebraic condition which is computationally feasible to check in many cases. Based
on Sage code described in [Behn et al., 2020] we wrote Magma code which, in the
case when g0 = 0, inputs all generating vectors (up to simultaneous conjugation)
for a fixed group and signature and returns a representative (and the corresponding
orbit) of each equivalence class of generating vectors. We restrict to g0 = 0 because
Aut+(Γ) is much easier to work with in this case.

In the study of Hurwitz spaces (and the related inverse Galois problem) generat-
ing vectors up to the action of Inn(G)×Aut+(Γ) are instead used. Since Breuer’s
code already computes one representative per equivalence class under the action of
inner automorphisms (which is precisely simultaneous conjugation) and since the
actions of each group in this direct product commute with each other, to find the
orbits under the action we only need consider the action of Aut+(Γ) on the output
of the modified Breuer code for each group and signature pair. When g0 = 0, this
action is exactly the braid action we described in Section 4.1 and we use the same
technique described there to compute equivalence classes under the braiding action
and assign a representative generating vector for each orbit.

4.4. Summary. One note about our presentation of groups. Breuer’s original code
outputs a group as labeled in Magma or GAP, so as a pair (a, b) which indicates the
group is of order a and is the bth group of that order in the database of small groups.
Our Magma version of Breuer’s code requires the group to be a permutation group
to compute double coset representatives as in Proposition 3.2. However, in Magma
many groups of the form SmallGroup(a,b) are not permutation groups. Also, to
correspond to the mapping ρ : π1(Y − B, y0) → Sd from Section 2, the group G
must be transitive and satisfy the Riemann-Hurwitz formula. So we first convert
the group to a permutation group, as in the standard proof of Cayley’s theorem.
The code to do this is at [Paulhus, 2016]. In doing so, we are specifying that our
covers are Galois.

Putting everything together, the final process to create the database at
http://www.lmfdb.org/HigherGenus/C/Aut is:

• For a fixed genus, load all the signature and group pairs computed with
Breuer’s original program and loop over this data.
• Convert groups of the form SmallGroup(a,b) in Breuer’s data to permu-

tation groups.
• Use our modified version of Breuer’s code to determine the refined pass-

ports, and compute generating vector(s) for each.

http://www.lmfdb.org/HigherGenus/C/Aut
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• Determine if the action on each refined passport describes the full auto-
morphism group of the family.
• Compute the Jacobian variety decomposition.
• If the action is the full action, check if the family consists of hyperelliptic

or cyclic trigonal curves. In special cases we add equations.
• In the case of g0 = 0, determine equivalence classes and representatives up

to braid and topological equivalence.
• Future additional information will be computed at this point.

4.5. Organization of the data on LMFDB. As of publication of this paper,
the database contains complete data up to genus 15 when the quotient X/G is the
Riemann sphere (g0 = 0) and up to genus 7 when g0 > 0.

Each tuple of information: (genus, group, signature) has its own page on LMFDB.
On each such page there is a list of the different refined passports corresponding to
the given genus, group, and signature, and links to individual pages for each refined
passport. Up to genus 7, every page also gives an option to only view actions up
to topological equivalence. Clicking on the label of the given representative for an
equivalence class leads to a page which lists all the refined passports in the given
equivalence class (and further delineated according to which are braid equivalent
to each other).

The individual pages of each refined passport list all generating vectors corre-
sponding to this passport. We also list which conjugacy classes the refined passport
corresponds to (as labeled by Magma when we initially generate the data–see Sec-
tion 5.1). These pages also contain information about whether the action represents
the full automorphism group of the family of Riemann surfaces. If the example is
not the full automorphism group, a link to the action which does correspond to
the full automorphism group is also included. We note if a refined passport of a
full automorphism group corresponds to a hyperelliptic curve or a cyclic trigonal
curve, and list the corresponding hyperelliptic involution or trigonal automorphism.
Known equations are also displayed on these pages. Up to genus 7 if there is more
than one generating vector on a page, there is an option to list only the repre-
sentatives of each orbit under the braid action instead of all generating vectors.
This feature is of particular value as the genus gets large as there are examples of
refined passports with thousands of distinct generating vectors up to simultaneous
conjugation but only a small handful up to braid action.

On both types of pages, a download button is available which downloads a
Magma or GAP record with information for the given refined passport (or sev-
eral records representing all the refined passports corresponding to a specific group
and signature). For researchers working on questions requiring computations of
generating vectors this feature should be the most useful as these files can simply
be downloaded and then loaded into Magma or GAP for immediate access to the
generating vectors. Also, a variety of search fields such as signature, or dimension
of the family, or whether the family is hyperelliptic add to the functionality of the
pages, and all search results may also be downloaded as Magma or GAP files.

A variety of statistics about the data currently in the database reside at https:
//www.lmfdb.org/HigherGenus/C/Aut/stats. The statistics list the maximum
order of a group acting for each genus and all the unique groups which act for

https://www.lmfdb.org/HigherGenus/C/Aut/stats
https://www.lmfdb.org/HigherGenus/C/Aut/stats
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a fixed genus. The number of distinct refined passports and distinct generating
vectors for each genus are also calculated.

5. Future Work

We plan to add additional information to the database. Here are a few examples.

5.1. Better Representation of Groups. One issue with the current data is that
different representations of isomorphic groups can create different lists of generating
vectors as the representatives of each orbit under the equivalence relations we have
discussed. Also the labeling of the irreducible characters or conjugacy classes is
dependent on Magma’s labeling for that particular representation of the group (so
the 2nd conjugacy class may not represent the same conjugacy class for distinct
isomorphic groups).

Recently a database of small groups up to order 2000 (except order 1024) has
been incorporated into LMFDB (see https://www.lmfdb.org/Groups/Abstract/).
Among many other pieces of information for each group, particular elements of the
group are fixed as generators (as are relations defining the group) and the conjugacy
classes and irreducible characters of the group have a fixed labeling, all assigned in
a deterministic way.

We can redo the computations from scratch (i.e., follow the steps outlined in
Section 4.4) but now starting from the fixed representation of the group as defined
in the small group database. Doing so ensures that labeling of generating vectors,
conjugacy classes, and irreducible characters will be deterministic. No more debate
over what is meant by the 2nd irreducible character or the 2nd conjugacy class of
the group! The group pages also produce character tables and we will be able to
link the irreducible characters listed on our pages directly to the corresponding row
of the character table presented on the group’s page.

5.2. Equivalence Relations. Some researchers only requires knowledge about
distinct actions up to conformal (or analytic) equivalence. Two actions η1 : Γ→ G
and η2 : Γ → G are conformally equivalent if there is some ω ∈ Aut(G) and

h̃ ∈ Aut(H) = PSL(2,R) so that the following diagram commutes

K −−−−→ Γ
η1−−−−→ Gyh̃∗

yh̃∗

yω
K −−−−→ Γ

η2−−−−→ G

where h̃∗ is the map that takes some γ ∈ K (or in Γ) and sends it to h̃γh̃−1

[Broughton, 1991]. This definition induces a conformal mapping h : X → X where
X = H/K. We hope to find a way to efficiently compute equivalence classes of
generating vectors up to conformal equivalence, and then provide options on the
LMFDB pages to only show generating vectors up to conformal equivalence.

5.3. Higher Genus Data. Breuer computed all group and signature pairs up to
genus 48, and Conder computed group and signature pairs for large groups (those
with |G| > 4(g − 1)) up to much higher genus [Conder, 2014]. We plan to use the
steps described in Section 4.4 to compute and then upload higher genus data to the
database, although first some current code will need to be made more efficient to
effectively compute data in higher genus.

https://www.lmfdb.org/Groups/Abstract/


A DATABASE OF GROUP ACTIONS ON RIEMANN SURFACES 11

As one particular example, the code to compute orbits of actions under topolog-
ical equivalence is very slow for particular families of groups as the genus increase.
There are several theoretical results and computational techniques that will speed
up these computations. In addition, for g0 > 0 the action of Aut+(Γ) is more com-
plicated than in the case where the quotient genus is the Riemann sphere and so
we don’t currently provide the option to list actions with g0 > 0 up to topological
equivalence. The code we use to compute topological equivalence would need to be
rewritten to be able to do so.

5.4. Other topics.

• There is much current research on superelliptic curves, and we could incor-
porate known data about these families into LMFDB.
• A new section in the LMFDB provides a database of Bely̆ı maps [Musty et al., 2019].

There are many connections that could be made between that database and
the one described in this paper.
• It is possible to compute information about intermediate quotients X/H

for H < G which could also be displayed for each action.
• The group and signature pairs which show up for a fixed genus create a

poset. We could display such a diagram to emphasize connections among
families of curves in the moduli space Mg.
• The Riemann matrix and corresponding period matrix are crucial objects

for understanding certain computational properties of Riemann surfaces.
• It would be nice to determine the fields of definition of these curves.
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