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The Problem

Given a prime p, pick integers d and A with p 1 A,
(d,p—1)=1. DefineE ={2,4,6,...,p— 1} and
0 =1{1,3,5,...,p — 2} to be the even and odd residues mod p.

We want to determine when the map x — Ax9 is a permutation
of the elements of E (i.e. when AEY N O is empty).
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Given a prime p, pick integers d and A with p 1 A,
(d,p—1)=1. DefineE ={2,4,6,...,p— 1} and
0 =1{1,3,5,...,p — 2} to be the even and odd residues mod p.

We want to determine when the map x — Ax9 is a permutation
of the elements of E (i.e. when AEY N O is empty).

There is the trivial case (d = A = 1). And there are some other
cases. For instance if p =5, d = 3, and A = 3, then the map
sending x to Ax9 sends the residue 2 to the residue 4 and
sends the residue 4 to the residue 2.



The following 6 cases give permutations of E :

(p,A,d)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9),(13,1,5).

Conjecture (Goresky and Klapper, 1997)

With the exception of the six cases listed before, if
(A,d) # (1,1) then AEY N O is nonempty.
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Theorem (Bourgain, Cochrane, P., Pinner)
For p > 2.26 - 10%° and (A,d) # (1,1), AEY N Q is nonempty.




Motivation

Definition
Given a prime p, an {-sequence based on p is a sequence
{a;}i of 0’s and 1's with a; = (2~' mod p) mod 2.

These sequences are strictly periodic with period p — 1 when 2
is a primitive root mod p.



Motivation

Definition
Given a prime p, an {-sequence based on p is a sequence
{a;}i of 0’s and 1's with a; = (2~' mod p) mod 2.

These sequences are strictly periodic with period p — 1 when 2
is a primitive root mod p.

@ Output sequence from maximal period feedback with carry
shift register
@ 2-adic expansion of a rational number r /p with (r,p) =1

@ Single codeword in the Barrows-Mandelbaum arithmetic
code
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Definition

Two periodic binary sequences a and b with the same period T
are cyclically distinct ifa; #b forall0 <t < T, where

ar = {aitthi-

Conjecture (Goresky and Klapper, 1997)

If p > 13 is a prime such that 2 is a primitive root mod p and a
is an ¢-sequence based on p, then every pair of allowable
decimations of a is cyclically distinct.

This conjecture would give many distinct sequences with ideal
arithmetic cross-correlation
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Conjecture (GK-Conjecture)

If p > 13 is a prime such that 2 is a primitive root mod p and a
is an /-sequence based on p, then every pair of allowable
decimations of a is cyclically distinct.

a is a cyclic permutation of a4 if and only if there exists
A € (Z/pZ)* with (A27'9 mod p) = (2~ mod p) mod 2
for all i
if and only if (Ax¢ mod p) = (x mod p) mod 2 for all x.

Note: We need 2 to be a primitive root for the second
equivalence.

Conjecture (GK-Conjecture)

If 2 is a primitive root modulo p, with the exception of the six
cases listed before, if (A,d) # (1, 1) then AEY N O is nonempty.



Goresky, Klapper, Murty, and Shparlinski verified the conjecture
for primes p less than 2 million. And for the following cases:

Qd=-
@ p=1mod4andd = P3!

Q@0<d< (224—1) or0>d > —(222;;)4
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Our Result

Theorem (Bourgain, Cochrane, P., Pinner)
Forp > 2.26-10% and (A,d) # (1,1), AEY N Q is nonempty.

Goal: Find x € E such that AxY € O.

Show there exists a solution (x,y) to the equation
A(2x)¥ =2y — 1 over Z/pZ with (x,y) € I3 x .

|1:{o,1,2,...,pT‘1} €Z/pZ =11 — {0} € Z/pZ.
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we let x, and x; be their characteristic functions.
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For the intervals | = {0,1,2,...,22 Y and J = {1,2,..., 21},
we let x, and x; be their characteristic functions.

Given any two functions f and g on Z/pZ we define the
convolution as fxg (x) = >_f(u)g(x — u).
u

We then define a(x,y) = xi*xi (X) - xi*x3 (Y)-

ais supportedon |y x I, (sincel +1 Clyand 1 +J C Iy).

Goal: Show > a(x,y) > 0.
A(2x)4=2y—-1
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Z OZ(X,y) = Z Za(u)v)ep(ux"‘v)’)
A(2x)d=2y—1 A(2x)d=2y -1 UV

x#0 x#0
where the a(u, v) are the Fourier coefficients



By results in finite Fourier series,

Z OZ(X,y) = Z Za(u)v)ep(ux"‘v)’)
A(2x)d=2y—1 A(2x)d=2y -1 UV

x#0 x#0
where the a(u, v) are the Fourier coefficients

We have a main term a(0,0)(p — 1) = pp%1!||3\3\-

We estimate the error term (using various technigues, in
particular binomial exponential sum bounds) and get that the
main term is greater than the error term when M < .000823p3

M = #{(X1, X2, X3, Xa) € (Z/PZ*)* | X1 +X2 = Xa+X4, xI +x5 = x¢ +xZ}
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If M < .000823p3, the GK-conjecture holds.

Letd; = (d —1,p —1). As long as dj is not too large we can
bound M using previous results of Cochrane and Pinner.
(Otherwise we have to do more work and actually get a better
result!)

Theorem (Bourgain, Cochrane, P., Pinner)

For any integer d with (d,p — 1) = 1 and d; < .18(p — 1)16/23
then M < 13658p56/23,

This gives us the conjecture for p > 2.26 - 10°°.



If dy is larger than 0.18(p — 1)6/23 we use multiplicative
characters to get the following.



If dy is larger than 0.18(p — 1)6/23 we use multiplicative
characters to get the following.

Theorem (Bourgain, Cochrane, P., Pinner)

() Letd; = (d —1,p—1) <p—1.Ifdy > 8(%logp + 1)2\/p
then the GK-conjecture holds.

(b) If p > 2.1-107 and d; > 10,/p then the GK-conjecture
holds.
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Possible Generalizations

1. Apply the methods in the paper to g-ary |-sequences:

a; = (@~" mod p) mod g where q is a primitive root modp.
(This would be the output of a feedback with carry shift register
(FCSR) in which the cells and multipliers are in Z/qZ.)

2. A problem of D.H. Lehmer: Obtain an asymptotic formula for
the number N_; of even residues x mod p such that x~* mod p
is an odd residue. Kloosterman sum estimates give N_; ~ p/4.

Given d relatively prime to p — 1 obtain an asymptotic formula
for the number Ny of even residues x mod p such that

x9 mod p is an odd residue. What we have done is establish
that Ng is nonzero.
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