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The Problem

Given a prime p, pick integers d and A with p - A,
(d , p − 1) = 1. Define E = {2, 4, 6, . . . , p − 1} and
O = {1, 3, 5, . . . , p − 2} to be the even and odd residues mod p.

We want to determine when the map x → Axd is a permutation
of the elements of E (i.e. when AEd ∩O is empty).

There is the trivial case (d = A = 1). And there are some other
cases. For instance if p = 5, d = 3, and A = 3, then the map
sending x to Axd sends the residue 2 to the residue 4 and
sends the residue 4 to the residue 2.
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The following 6 cases give permutations of E :

(p, A, d) = (5, 3, 3), (7, 1, 5), (11, 9, 3), (11, 3, 7), (11, 5, 9), (13, 1, 5).

Conjecture (Goresky and Klapper, 1997)

With the exception of the six cases listed before, if
(A, d) 6= (1, 1) then AEd ∩O is nonempty.

Theorem (Bourgain, Cochrane, P., Pinner)

For p > 2.26 · 1055 and (A, d) 6= (1, 1), AEd ∩O is nonempty.
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Motivation

Definition

Given a prime p, an `-sequence based on p is a sequence
{ai}i of 0’s and 1’s with ai ≡ (2−i mod p) mod 2.

These sequences are strictly periodic with period p − 1 when 2
is a primitive root mod p.

Output sequence from maximal period feedback with carry
shift register

2-adic expansion of a rational number r/p with (r , p) = 1

Single codeword in the Barrows-Mandelbaum arithmetic
code
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Definition

If a is an `-sequence based on p then if (d , p − 1) = 1, an
allowable decimation of a is the sequence x = ad = {ad ·i}i .

Definition

Two periodic binary sequences a and b with the same period T
are cyclically distinct if at 6= b for all 0 < t < T , where
at = {ai+t}i .

Conjecture (Goresky and Klapper, 1997)

If p > 13 is a prime such that 2 is a primitive root mod p and a
is an `-sequence based on p, then every pair of allowable
decimations of a is cyclically distinct.

This conjecture would give many distinct sequences with ideal
arithmetic cross-correlation .
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Conjecture (GK-Conjecture)

If p > 13 is a prime such that 2 is a primitive root mod p and a
is an `-sequence based on p, then every pair of allowable
decimations of a is cyclically distinct.

a is a cyclic permutation of ad if and only if there exists
A ∈ (Z/pZ)× with (A2−id mod p) ≡ (2−i mod p) mod 2

for all i
if and only if (Axd mod p) ≡ (x mod p) mod 2 for all x .

Note: We need 2 to be a primitive root for the second
equivalence.

Conjecture (GK-Conjecture)

If 2 is a primitive root modulo p, with the exception of the six
cases listed before, if (A, d) 6= (1, 1) then AEd ∩O is nonempty.
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Previous Work

Goresky, Klapper, Murty, and Shparlinski verified the conjecture
for primes p less than 2 million. And for the following cases:

1 d = −1
2 p ≡ 1 mod 4 and d = p+1

2

3 0 < d ≤ (p2−1)4

224p7 or 0 > d ≥ − (p2−1)4

225p7



Our Result

Theorem (Bourgain, Cochrane, P., Pinner)

For p > 2.26 · 1055 and (A, d) 6= (1, 1), AEd ∩O is nonempty.

Goal: Find x ∈ E such that Axd ∈ O.

Show there exists a solution (x , y) to the equation
A(2x)d = 2y − 1 over Z/pZ with (x , y) ∈ I1 × I2.

I1 =
{

0, 1, 2, . . . , p−1
2

}
∈ Z/pZ I2 = I1 − {0} ∈ Z/pZ.
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For the intervals I = {0, 1, 2, . . . , p−1
4 } and J = {1, 2, . . . , p+1

4 },
we let χI and χJ be their characteristic functions.

Given any two functions f and g on Z/pZ we define the
convolution as f ∗g (x) =

∑
u

f (u)g(x − u).

We then define α(x , y) = χI∗χI (x) · χI∗χJ (y).

α is supported on I1 × I2 (since I + I ⊂ I1 and I + J ⊂ I2).

Goal: Show
∑

A(2x)d=2y−1
α(x , y) > 0.
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By results in finite Fourier series,∑
A(2x)d=2y−1

x 6=0

α(x , y) =
∑

A(2x)d=2y−1
x 6=0

∑
u,v

a(u, v)ep(ux + vy)

where the a(u, v) are the Fourier coefficients

We have a main term a(0, 0)(p − 1) = p−1
p2 |I|3|J|.

We estimate the error term (using various techniques, in
particular binomial exponential sum bounds) and get that the
main term is greater than the error term when M < .000823p3

M = #{(x1, x2, x3, x4) ∈ (Z/pZ∗)4 | x1+x2 = x3+x4, xd
1 +xd

2 = xd
3 +xd

4 }
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Theorem (Bourgain, Cochrane, P., Pinner)

If M < .000823p3, the GK-conjecture holds.

Let d1 = (d − 1, p − 1). As long as d1 is not too large we can
bound M using previous results of Cochrane and Pinner.
(Otherwise we have to do more work and actually get a better
result!)

Theorem (Bourgain, Cochrane, P., Pinner)

For any integer d with (d , p − 1) = 1 and d1 < .18(p − 1)16/23

then M ≤ 13658p66/23.

This gives us the conjecture for p > 2.26 · 1055.
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Large d1

If d1 is larger than 0.18(p − 1)16/23 we use multiplicative
characters to get the following.

Theorem (Bourgain, Cochrane, P., Pinner)

(a) Let d1 = (d − 1, p − 1) < p − 1. If d1 > 8( 4
π2 log p + 1)2√p

then the GK-conjecture holds.
(b) If p > 2.1 · 107 and d1 > 10

√
p then the GK-conjecture

holds.
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Possible Generalizations

1. Apply the methods in the paper to q-ary l-sequences:
ai ≡ (q−i mod p) mod q where q is a primitive root modp.
(This would be the output of a feedback with carry shift register
(FCSR) in which the cells and multipliers are in Z/qZ.)

2. A problem of D.H. Lehmer: Obtain an asymptotic formula for
the number N−1 of even residues x mod p such that x−1 mod p
is an odd residue. Kloosterman sum estimates give N−1 ∼ p/4.

Given d relatively prime to p − 1 obtain an asymptotic formula
for the number Nd of even residues x mod p such that
xd mod p is an odd residue. What we have done is establish
that Nd is nonzero.
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The End


