You are welcome to work together but everyone needs to write up distinct solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.

Warmup

- $\S 9.1 \# 1$. If $f(x) \mid g(x)$ and $g(x) \mid f(x)$, prove that there is a rational number c such that $g(x)=c f(x)$.
- $\S 9.1 \# 4$. If $p(x)$ is irreducible, prove that $c p(x)$ is irreducible for any rational $c \neq 0$.
- $\S 9.4 \# 3$. Let $\alpha=\alpha_{1}+\alpha_{2} i$ be an algebraic number, where α_{1} and α_{2} are real. Does it follow that α_{1} and α_{2} are algebraic numbers?

Problems

1. §9.1 \#3. If $p(x)$ is irreducible and $g(x) \mid p(x)$, prove that either $g(x)$ is a constant or $g(x)=c p(x)$ for some rational number c.
2. $\S 9.1 \# 6$. If $f(x)$ and $g(x)$ are primitive polynomials, and if $f(x) \mid g(x)$ and $g(x) \mid f(x)$, prove that $f(x)= \pm g(x)$.
3. $\S 9.2 \# 1$. Find the minimal polynomial of each of the following algebraic numbers:

$$
7, \sqrt[3]{7}, \frac{1+\sqrt[3]{7}}{2}, 1+\sqrt{2}+\sqrt{3}
$$

Which of these are algebraic integers?
4. $\S 9.4 \# 2$. For any algebraic number α, define m as the smallest positive rational integer such that $m \alpha$ is an algebraic integer. Prove that if $b \alpha$ is an algebraic integer, where b is a rational integer, then $m \mid b$.

