You are welcome to work together but everyone needs to write up distinct solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.

Warmup

- $\S 3.1 \# 4$. Find the values of $\left(\frac{a}{p}\right)$ in each of the 12 cases $a=-1,2,-2,3$ and $p=11,13,17$.
- $\S 3.1 \# 7$. Which of the following congruences have solutions? How many?

$$
x^{2} \equiv \pm 2 \bmod 61 \quad x^{2} \equiv \pm 2 \bmod 59 \quad x^{2} \equiv \pm 2 \bmod 122 \quad x^{2} \equiv \pm 2 \bmod 118
$$

- $\S 3.2 \# 4$. Which of the following congruences are solvable? (Note that 227, 229, and 1009 are prime).

$$
x^{2} \equiv \pm 5 \bmod 227 \quad x^{2} \equiv \pm 5 \bmod 229 \quad x^{2} \equiv \pm 7 \bmod 1009
$$

- $\S 3.2 \# 5$. Find the values of $\left(\frac{p}{q}\right)$ for the nine cases obtained from all combinations of $p=7,11,13$ and $q=227,229$, and 1009 .
- $\S 3.2 \# 10$. Of which primes is -2 a quadratic residue?
- $\S 5.1 \# 2$. Find all solutions of $10 x-7 y=17$.
- $\S 5.3 \# 6$. Describe those relatively prime positive integers u and v such that $6 u v$ is a perfect square.
- $\S 5.4 \# 1$. Show that the equation $x^{2}+y^{2}=9 z+3$ has no integral solution.

Problems

1. $\S 3.1 \# 9$. Let p be a prime and let $(a, p)=(b, p)=1$. Prove that if $x^{2} \equiv a \bmod p$ and $x^{2} \equiv b \bmod p$ are not solvable, then $x^{2} \equiv a b \bmod p$ is solvable.
2. $\S 3.2 \# 2$. Prove that if p and q are distinct primes of the form $4 k+3$ and if $x^{2} \equiv p \bmod q$ has no solution, then $x^{2} \equiv q \bmod p$ has two solutions.
3. $\S 5.1 \# 7$. Let a, b, c be positive integers. Prove that there is no solution of $a x+b y=c$ in positive integers if $a+b>c$.
4. §5.3 \# 11. Using Theorem 5.5, determine all solutions of the equation $x^{2}+y^{2}=2 z^{2}$. (Hint: Write the equation in the form $(x+y)^{2}+(x-y)^{2}=(2 z)^{2}$.)

Challenge

I. $\S 3.2 \# 22$. Suppose that $(a b, p)=1$ and that $p>2$. Show that the number of solutions (x, y) of the congruence $a x^{2}+b y^{2} \equiv 1 \bmod p$ is $p-\left(\frac{-a b}{p}\right)$.

