You are welcome to work together but everyone needs to write up distinct solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.

Warmup

- $\S 2.7 \# 1$. Reduce the following congruences to equivalent congruences of degree ≤ 6.
(a) $x^{11}+x^{8}+5 \equiv 0 \bmod 7$
(b) $x^{20}+x^{13}+x^{7}+x \equiv 2 \bmod 7$
(c) $x^{15}-x^{10}+4 x-3 \equiv 0 \bmod 7$.
- $\S 2.8 \# 4$. To what exponents do each of $1,2,3,4,5,6$ belong modulo 7 ? To what exponents do they belong modulo 11? (We did 7 in class so feel free to pick another number to try.)
- $\S 2.8$ \# 8. Use Theorem 2.37 to determine how many solutions each of the following congruences has:
(a) $x^{12} \equiv 16 \bmod 17$
(b) $x^{48} \equiv 9 \bmod 17$
(c) $x^{20} \equiv 13 \bmod 17$
(d) $x^{11} \equiv 9 \bmod 17$
- $\S 3.1 \# 3$. Prove that 3 is a quadratic residue of 13 but a quadratic non-residue of 7 .

Problems

1. $\S 2.8 \# 5$. Let p be an odd prime. Prove that a belongs to the exponent 2 modulo p if and only if $a \equiv-1 \bmod p$.
2. $\S 2.8 \# 9$. Show that $3^{8} \equiv-1 \bmod 17$. Explain why this implies that 3 is a primitive root of 17 .
3. $\S 2.8 \# 12$. Prove that if p is a prime, $(a, p)=1$ and $(n, p-1)=1$ then $x^{n} \equiv a \bmod p$ has exactly one solution.
4. $\S 2.8 \# 21$. Let g be a primitive root of the odd prime p. Show that $-g$ is a primitive root, or not, according as $p \equiv 1 \bmod 4$ or $p \equiv 3 \bmod 4$.

Challenge

I. $\S 2.8 \# 23$. Prove that if a belongs to the exponent 3 modulo a prime p, then $1+a+a^{2} \equiv 0 \bmod p$, and $1+a$ belongs to the exponent 6 .

