Math 7770 Spring 2011
Homework 10 (updated)
Due: April 11, 2011

You are welcome to work together but everyone needs to write up distinct solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.

Warmup

- $\S 9.4 \#$. Prove that the units of the rational number field \mathbb{Q} are ± 1 and that integers α and β are associates in this field if and only if $\alpha= \pm \beta$.
- $\S 9.5 \# 6$. Prove that the following assertion is false in $\mathbb{Q}(i)$: If $N(\alpha)$ is a rational integer, then α is an algebraic integer.
- $\S 9.6 \# 1$. Prove that the units in $\mathbb{Q}(\sqrt{2})$ are $\pm(1+\sqrt{2})^{n}$ where n ranges over all integers. (You may freely use the ideas from Theorem 7.26).
- Show that $\mathbb{Z}[\sqrt{-5}]$ contains no element whose norm is 2 or 3 .

Problems

1. $\S 9.5 \# 4$. If α and $\beta \neq 0$ are integers in $\mathbb{Q}(\sqrt{m})$, and if $\alpha \mid \beta$, prove that $\bar{\alpha} \mid \bar{\beta}$ and $N(\alpha) \mid N(\beta)$.

2 . $\S 9.5 \# 7$. Prove that the following assertion is false in every quadratic field: If $N(\alpha)$ is a rational integer, then α is an algebraic integer. (Hint: See the back of the book.)
3. Let D be the ring of integers in $\mathbb{Q}(\sqrt{m})$. Show that, given a rational integer $M>0$ there are at most finitely many integers $\alpha \in D$ with $\max (N(\alpha), N(\bar{\alpha})) \leq M$.
4. If we let $\alpha=3+4 \sqrt{-1}$ then the equation $N(\alpha)=5^{2}$ is another way of expressing the fact that $(3,4,5)$ is a Pythagorean triple. Using the identity $N\left(\alpha^{n}\right)=(N(\alpha))^{n}$ for $n=2$ and $n=3$, find two other triples. Let $\beta=5+12 \sqrt{-1}$ so that $N(\beta)=\beta^{2}$. Use α and β to find a triple with hypotenuse 65. Using $\gamma=12+5 \sqrt{-1}$ instead, find another triple with hypotenuse 65 .

Challenge

I. If $R \subset S$ are integral domains, $\alpha \in S$ is said to be integral over R if $\alpha^{m}+b_{1} \alpha^{m-1}+\cdots+b_{m}=0$ for suitable m, and b_{i} all in R. S is called integral over R if every element of S is integral over R. Prove that if S is integral over R then S is a field if and only if R is a field.
II. If k is any field containing a ring D, the set of all elements in k which are integral over D (see previous problem for definition) is called the integral closure of D in k. Show that the integral closure is a ring and that it is integrally closed.

