- 1. 3.4 # 8. Let G be a finite group. Prove that the following are equivalent: (See book for hint).
 - (a) G is solvable
 - (b) G has a chain of subgroups: $1 = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_s = G$ such that H_{i+1}/H_i is cyclic $0 \le i \le s 1$
 - (c) all composition factors of G are of prime order
 - (d) G has a chain of subgroups $1 = N_0 \leq N_1 \leq \cdots \leq N_t = G$ such that each N_i is a normal subgroup of G and N_{i+1}/N_i is abelian, $0 \leq i \leq t-1$
- 2. 3.5 # 9. Prove that the unique subgroup of order 4 in A_4 is normal and isomorphic to V_4 .
- 3. 4.1 # 1. Let G act on the set A. Prove that if $a, b \in A$ and $b = g \cdot a$ for some $g \in G$ then $G_b = gG_ag^{-1}$. Deduce that if G acts transitively on A then then kernel of the action is $\bigcap_{g \in G} gG_ag^{-1}$.
- 4. 4.2 #2. List the elements of S_3 as 1, (1 2), (2 3), (1 3), (1 2 3), (1 3 2) and label these with the integers 1, 2, 3, 4, 5, 6 respectively. Exhibit the image of each element of S_3 under the left regular representation of S_3 into S_6 .
- 5. 4.2 # 8. Prove that if H has finite index n then there is a normal subgroup K of G with $K \leq H$ and $|G:K| \leq n!$.
- 6. Find all conjugacy classes and their sizes in the following groups: (a) $Z_2 \times S_3$ (b) A_4 .
- 7. 4.3 # 13. Find all finite groups which have exactly two conjugacy classes.
- 8. 4.3 #30. If G is a group of odd order, prove for any nonidentity element $x \in G$ that x and x^{-1} are not conjugate in G.
- 9. Let G be a group. If Aut(G) is a cyclic group, show that G is abelian.