You are welcome to work together but everyone needs to write up distinct solutions. If you use any books or other people heavily, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.

1. $3.4 \# 8$. Let G be a finite group. Prove that the following are equivalent: (See book for hint).
(a) G is solvable
(b) G has a chain of subgroups: $1=H_{0} \unlhd H_{1} \unlhd \cdots \unlhd H_{s}=G$ such that H_{i+1} / H_{i} is cyclic $0 \leq i \leq s-1$
(c) all composition factors of G are of prime order
(d) G has a chain of subgroups $1=N_{0} \unlhd N_{1} \unlhd \cdots \unlhd N_{t}=G$ such that each N_{i} is a normal subgroup of G and N_{i+1} / N_{i} is abelian, $0 \leq i \leq t-1$
2. $3.5 \# 9$. Prove that the unique subgroup of order 4 in A_{4} is normal and isomorphic to V_{4}.
3. $4.1 \# 1$. Let G act on the set A. Prove that if $a, b \in A$ and $b=g \cdot a$ for some $g \in G$ then $G_{b}=g G_{a} g^{-1}$. Deduce that if G acts transitively on A then then kernel of the action is $\cap_{g \in G} g G_{a} g^{-1}$.
4. $4.2 \# 2$. List the elements of S_{3} as $1,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)$ and label these with the integers $1,2,3,4,5,6$ respectively. Exhibit the image of each element of S_{3} under the left regular representation of S_{3} into S_{6}.
5. $4.2 \# 8$. Prove that if H has finite index n then there is a normal subgroup K of G with $K \leq H$ and $|G: K| \leq n!$.
6. Find all conjugacy classes and their sizes in the following groups:
(a) $Z_{2} \times S_{3}$
(b) A_{4}.
7. 4.3 \# 13. Find all finite groups which have exactly two conjugacy classes.
8. $4.3 \# 30$. If G is a group of odd order, prove for any nonidentity element $x \in G$ that x and x^{-1} are not conjugate in G.
9. Let G be a group. If $\operatorname{Aut}(G)$ is a cyclic group, show that G is abelian.
