Math 321: Foundations of Abstract Algebra

Homework 2 : Due February 7

1. Suppose a and b are integers that divide the integer c. If a and b are relatively prime, prove that $a b$ divides c. Show, by example, that if a and b are not relatively prime, then $a b$ need not divide c.
2. Prove that every prime greater than 3 can be written in the form $6 n+1$ or $6 n+5$.
3. \# 4.2. Also, prove that G is a group.
4. These will be 2 points each. Be sure to explain your work.
(a) \# 4.5
(b) \# 4.7
5. \# 4.12 (Remember, even if a question in the book technically has a yes/no answer, you need to justify your answer with a mathmatical proof for credit.)
6. \# 4.19 (Be sure to consider finite and infinite order elements.)
7. \# 4.20
8. Assume G is an abelian group for this problem.
(a) Prove that $(x y)^{n}=x^{n} y^{n}$ for all x and $y \in G$.
(b) \# 4.32 (Hint: One approach is to prove the result if $(m, n)=1$ first, and then find a way to use that result and the Fundamental Theorem of Arithmetic to prove the case when $(m, n)>1$.)
