Math 321: Foundations of Abstract Algebra

Homework 1: Due January 31

1. \#1.3 and \# 1.6. In each case, determine whether or not the given \star is a binary operation on the given set S. If \star is a binary operation on S, determine whether \star is commutative and whether it is associative.
(c) $S=\mathbb{R} \quad a \star b=\frac{a}{a^{2}+b^{2}}$
(g) $S=\{1,-2,3,2,-4\} \quad a \star b=|b|$
(i) $S=$ the set of all 2×2 matrices with real entries, and if

$$
a=\left(\begin{array}{ll}
r_{1} & r_{2} \\
r_{3} & r_{4}
\end{array}\right) \text { and } b=\left(\begin{array}{ll}
r_{5} & r_{6} \\
r_{7} & r_{8}
\end{array}\right)
$$

then

$$
a \star b=\left(\begin{array}{ll}
r_{1}+r_{5} & r_{2}+r_{6} \\
r_{3}+r_{7} & r_{4}+r_{8}
\end{array}\right) .
$$

2. \#2.1. Which of the following are groups? Why?
(c) $\mathbb{R}-\{0\}$ under the operation $a \star b=|a b|$
(d) The set $\{-1,1\}$ under multiplication
(h) $\mathbb{R}-\{1\}$ under the operation $a \star b=a+b-a b$
3. $\#$ 2.10. Let G be the set of all 2×2 matrices $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ where $a, b \in \mathbb{R}$ and $a^{2}+b^{2} \neq 0$. Show that G forms a group under matrix multiplication.
4. \#3.4. Let g be an element of a group (G, \star) such that for some one element $x \in G, x \star g=x$. Show that $g=e$.
5. \#3.6. Prove the Cancellation Laws (Theorem 3.6).
6. \#3.9. Let (G, \star) be a group. Show that (G, \star) is abelian if and only if

$$
(x \star y)^{-1}=x^{-1} \star y^{-1} \text { for all } x, y \in G .
$$

Extra

1. Show that any finite group with 4 elements must be abelian.
