Math 321: Foundations of Abstract Algebra Homework 1 : Due January 31

- 1. #1.3 and # 1.6. In each case, determine whether or not the given \star is a binary operation on the given set S. If \star is a binary operation on S, determine whether \star is commutative and whether it is associative.
 - (c) $S = \mathbb{R}$ $a \star b = \frac{a}{a^2 + b^2}$
 - (g) $S = \{1, -2, 3, 2, -4\}$ $a \star b = |b|$
 - (i) S = the set of all 2×2 matrices with real entries, and if

$$a = \begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix}$$
 and $b = \begin{pmatrix} r_5 & r_6 \\ r_7 & r_8 \end{pmatrix}$

then

$$a \star b = \begin{pmatrix} r_1 + r_5 & r_2 + r_6 \\ r_3 + r_7 & r_4 + r_8 \end{pmatrix}.$$

- 2. #2.1. Which of the following are groups? Why?
 - (c) $\mathbb{R} \{0\}$ under the operation $a \star b = |ab|$
 - (d) The set $\{-1, 1\}$ under multiplication
 - (h) $\mathbb{R} \{1\}$ under the operation $a \star b = a + b ab$
- 3. #2.10. Let G be the set of all 2×2 matrices $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ where $a, b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$. Show that G forms a group under matrix multiplication.
- 4. #3.4. Let g be an element of a group (G, \star) such that for some one element $x \in G$, $x \star g = x$. Show that g = e.
- 5. #3.6. Prove the Cancellation Laws (Theorem 3.6).
- 6. #3.9. Let (G, \star) be a group. Show that (G, \star) is abelian if and only if $(x \star y)^{-1} = x^{-1} \star y^{-1}$ for all $x, y \in G$.

Extra

1. Show that any finite group with 4 elements must be abelian.