
Dihedral Group Notes

Jen Paulhus ∗

The dihedral group is a group formed from the plane symmetries of regular polygons. What are
plane symmetries and regular polygons?

Definition. A plane symmetry of a figure is a function from the plane to itself that carries the
figure onto itself and preserves distances.

Definition. A regular polygon is a polygon that is equiangular and equilateral (so all sides have
the same length and all angles have the same measurement).

Example Let’s start by considering the square. Label it with vertices 1, 2, 3, and 4 and assume
the center of the square is the origin of a standard Cartesian plane.

Notice that one plane symmetry is simply rotating the figure clockwise by 90◦ (or π
2

radians).
We call that rotation r. We can also rotate by 180◦ (or π radians) and 270◦ (or 3π

2
radians). Those

three rotations are drawn below.

Another plane symmetry is reflection along the diagonal line connecting vertex 1 with vertex 3.
We call this symmetry s. There is also reflection along the x-axis and y-axis, as well as the other
diagonal. The four reflections are drawn below. Notice they are each compositions of s with one of
the rotations above.
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The pictures above represent all plane symmetries. Any other swapping of vertices you attempt
will violate the distance preserving condition for plane symmetries. So, for instance, we cannot just
switch vertices 1 and 4 above. This would change the distance between 1 and 3.

There are many relations among the pictures above. For instance, what happens if we reflect
across the diagonal line from vertex 1 to vertex 3, followed by a 270◦ rotation? This is the same
as doing one 90◦ rotation followed by reflection across the diagonal line from vertex 1 to vertex 3.
In symbols r3s = sr, we write this as with function composition. So r3s means “apply s and then
apply r3”.

Theorem 1. The set of plane symmetries of a square under the operation of function composition
forms a group called D4 or the dihedral group on 4 objects (called the octic group in your book).

Proof: The composition of plane symmetries must be a plane symmetry (it must preserve
distance and carry the figure onto itself) and hence the operation is binary. Associativity follows
from function composition. The identity is the trivial symmetry. And, finally, inverses exist. The
intuitive idea is that one can “undo” any plane symmetry. For instance, s can be “undone” by
another application of s, and r can be “undone” by applying r3. 2

In the discussion above, was there anything particularly special about squares? Could we do
the same analysis with pentagon or hexagon or any regular n-gon? Definitely.

Definition. The dihedral group of order 2n is the group formed by the symmetries of a regular
n-gon. We denote this group as Dn (although the occasional book or research paper will write this
as D2n).

Theorem 2. Label the vertices of Dn starting with v1 and working clockwise to v2, v3, etc. Let r
be rotation of the n-gon by 2π/n radians and let s be reflection across the line connecting v1 to the
center of the object.

(1) e, r, r2, . . .,rn−1 are all distinct and rn = e so o(r) = n.
(2) o(s) = 2.
(3) s 6= ri for any i.
(4) ris 6= rjs for all 0 ≤ i, j ≤ n− 1 with i 6= j.

From this we can conclude that Dn = {e, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s}.

Proof: (1) Consider where v1 gets mapped under each symmetry. The symmetry r sends v1 to
v2, while r2 sends v1 to v3 and ri sends v1 to vi+1 and i + 1 6= j + 1 when i 6= j and 0 ≤ i, j < n.
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(2) Simply consider what applying s twice to each vertex will do to it. (3) The symmetry s fixes
v1 yet the only ri which does this is rn which is the identity e. However s is not the identity since
it sends v2 to vn and so s is not a power of r. (4) Since ri 6= rj by (1), reflecting each by s will not
produce the same symmetry. 2

Definition. Since every element of Dn is a product of s and r, we say that those two elements
generate the group. In general we say that a subset S of a group G generates the group if every
element of the group may be written as a product of elements in S.

Theorem 3. Let r, s ∈ Dn be as defined above.
(1) rs = sr−1.
(2) For homework you will prove that ris = sr−i for all 0 ≤ i ≤ n.

Proof: For (1) consider where rs sends v1. The symmetry s sends it to v1, followed by the
symmetry r which sends v1 to v2. Conversely, for sr−1 we first apply r−1 to v1 which goes to vn and
then s sends vn to v2.

Similarly s sends v2 to vn and r sends vn to v1 while r−1 sends v2 to v1 and s preserves v1.
In general, if 2 < i ≤ n then s sends vi to vn−i+2 and r sends vn−i+2 to vn−i+3 whereas r−1 sends

vi to vi−1 and s sends vi−1 to vn−(i−1)+2 = vn−i+. So rs and sr−1 send every vertex to the same
vertex which means they must be the same symmetry. 2

Notice that (1) tells us that Dn is not abelian if n ≥ 3. Theorem 3 above is useful for compu-
tations. For example if we want to know what s(rs) is in the group, we can rewrite rs as sr−1 and
get s(rs) = s(sr−1) = (ss−1)r−1 = rn−1 since s has order 2 and r · rn−1 = rn = e.
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