Math 218: Elementary Number Theory HOMEWORK 9 : DUE OCTOBER 10

- 2.2 #11. (a) If p is a prime, prove that the binomial coefficient $\binom{p}{r} \equiv 0 \mod p$ for $r = 1, 2, 3, \ldots, p 1$. (b) Use (a) to prove that $(a + b)^p \equiv a^p + b^p \mod p$.
 - 1. (a) Prove that

$$3^n = \sum_{k=0}^n \binom{n}{k} 2^k$$

(b) For $n \ge 1$, prove

$$\binom{n}{0} - \binom{n}{1} + \dots + (-1)^k \binom{n}{k} + \dots + (-1)^n \binom{n}{n} = 0.$$

- 2.2 #13. As a kid, you likely learned that 9 divides a number n if and only if the sum of the digits of n is divisible by 9. In this problem, you are proving why that divisibility test works. See the problem writeup in the book and note that the a_i in the book represent digits between 0 and 9. The first sentence of the problem is telling you another statement you may remember from grade school: that the number "23491" means 2 ⋅ 10⁴ + 3 ⋅ 10³ + 4 ⋅ 10² + 9 ⋅ 10¹ + 1 ⋅ 10⁰.
- 2.3 #6. If a is a unit in Z_m , prove that m a is also a unit in Z_m .
- 2.3 #14. Let p and q be odd primes. Which $a \in Z_{pq}$ are such that $a^2 \equiv 1 \mod pq$? (Suggestion: there are several different cases to consider.)