## Math 218: Elementary Number Theory

## Homework 9 : Due October 10

2.2\#11. (a) If $p$ is a prime, prove that the binomial coefficient $\binom{p}{r} \equiv 0 \bmod p$ for $r=1,2,3, \ldots, p-1$.
(b) Use (a) to prove that $(a+b)^{p} \equiv a^{p}+b^{p} \bmod p$.

1. (a) Prove that

$$
3^{n}=\sum_{k=0}^{n}\binom{n}{k} 2^{k} .
$$

(b) For $n \geq 1$, prove

$$
\binom{n}{0}-\binom{n}{1}+\cdots+(-1)^{k}\binom{n}{k}+\cdots+(-1)^{n}\binom{n}{n}=0
$$

2.2 \#13. As a kid, you likely learned that 9 divides a number $n$ if and only if the sum of the digits of $n$ is divisible by 9 . In this problem, you are proving why that divisibility test works. See the problem writeup in the book and note that the $a_{i}$ in the book represent digits between 0 and 9. The first sentence of the problem is telling you another statement you may remember from grade school: that the number " 23491 " means $2 \cdot 10^{4}+3 \cdot 10^{3}+4 \cdot 10^{2}+9 \cdot 10^{1}+1 \cdot 10^{0}$.
2.3 \#6. If $a$ is a unit in $Z_{m}$, prove that $m-a$ is also a unit in $Z_{m}$.
2.3\#14. Let $p$ and $q$ be odd primes. Which $a \in Z_{p q}$ are such that $a^{2} \equiv 1 \bmod p q$ ? (Suggestion: there are several different cases to consider.)

