Math 218: Elementary Number Theory

Homework 5 : Due September 19

Note: There will be no rewrite opportunities on this homework due to the upcoming exam.
$\S 1.7 \# 8$. (a) Prove that the equation $a x+b y=n$ has a solution for all integers n when $(a, b)=1$.
(b) State a necessary condition for there to be an integer solution to the equation in (a) if $(a, b)=d \neq 1$. By "necessary condition" mathematicians mean finding a statement blah to fill in the sentence

When $(a, b)=d \neq 1$, if blah is true then there is an integer solution to the equation in (a).

Explain why your condition works. (Suggestion: Try a few specific examples first to come up with a condition.)
§1.7 \#9. See book. Assume that the student needs to use all $\$ 200$ for each part of this problem. The second part is really saying at least 6 math books. (Remember, our textbook is from the early 1970s so prices in this problem reflect that, as do specific gender pronouns!)
§1.8 \#4. If $(m, n)=1$, prove that $(m+n, m n)=1$.
§1.8 \#11. If $(a, n)=d$ and $(r, n)=1$, prove that $(r-a, d)=1$.
§1.10 \#1\&2. You do not need to include words for this problem.
(a) Write in standard form these four numbers: 286, 390, 1278, 842
(b) Write the product represented by $\prod_{p \mid 1260} p^{a_{p}}$.
$\S 1.10 \# 7$. A unitary divisor of a number n is a divisor d having the property that $(d, n / d)=1$. Write the unitary divisors of $n=p^{2} q^{5}$, where p and q are primes. Explain your answer.
$\S 1.10 \# 14$. This is a optional bonus question if you are interested in the idea of unique factorization failing. It will be worth only a couple bonus points.

