Math 218: Elementary Number Theory

Homework 4 : Due September 14

§1.5 \# 4. (a) Prove that $M_{4} \subseteq M_{4}+M_{10}$.
(b) Prove that M_{4} and $M_{4}+\{1\}$ have no elements in common.
$\S 1.5 \# 6$. Assume $a \mid b$.
(a) Prove that $M_{b} \subseteq M_{a}$.
(b) Prove that $[a, b]=|b|$.
§1.6 $\# 3$. For all integers x, prove that $(15 x+17,10 x+11)=1$.
§1.6 \#4. If $(a, b)=1$ and $d^{\prime} \mid a$ and $d^{\prime \prime} \mid b$, prove that $\left(d^{\prime}, d^{\prime \prime}\right)=1$.
$\S 1.6 \# 5$. If $(a, b)=d$ and $(a, c)=f$ and $(b, c)=1$, prove that $(d, f)=1$.
§1.6 \#7. (a) If $a \mid c$ and $b \mid c$ and $(a, b)=1$, prove that $a b \mid c$.
(b) Given an example to show that the statement in (a) need not be true if $(a, b) \neq 1$.
§1.6 \#8. (a) If $(a, b)=d$ and $(a, c)=f$ and $(b, c)=1$, prove that $(a, b c)=d f$.
(Hint: Prove that $k \mid d f$ and $d f \mid k . L e t ~(a, b c)=k$. Problems $1.6 \# 5$ and $1.6 \# 7$, plus characterization (2) of the greatest common divisor might help.)
(b) Give an example to show that (a) need not be true if $(b, c) \neq 1$.

