Math 218: Elementary Number Theory

Homework 3 : Due September 9
$\S 1.4 \# 2$. If p is a prime greater than 4 , prove that p has the form $4 k+r$ where $r=1$ or $r=3$.
$\S 1.4 \# 3$. If $a=4 q_{1}+3$ and $b=4 q_{2}+3$ prove that $a b=4 q_{3}+1$ where q_{1}, q_{2}, and q_{3} represent integers.
§1.4 \# 9. Prove that 3, 7, 11 is the only set of three consecutive primes of the form $c, c+4, c+8$.
$\S 1.4 \# 12$. If a product of primes is of the form $4 q+3$ prove that at least one of the primes must have this form. Hint: Use problem $\S 1.4 \# 2$.
$\S 1.3 \# 10$. Prove that for any positive integers k there exist sequences of k consecutive composite integers. For example, when $k=3$, the sequence $14,15,16$ is 3 consecutive composite integers. Hint: Factorials might be your friend.

