Math 218: Elementary Number Theory

Homework LAST!! : Due December 9

4.1 \#7. Prove that the set of primes of the form $5+6 k$ is infinite.
4.1 \#8. Prove that the set of primes of the form $7+8 k$ is infinite. (Hint: Choose $N=2(n!)^{2}-1$ and you may assume Theorem 3.7.2 without proof.)
4.3 \#6. Find an example of a pair of functions f, g so that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1 \text { but } \lim _{n \rightarrow \infty} f(n)-g(n)=\infty
$$

Explain why your functions satisfy both statements. (Note: Perhaps start by thinking of calculus functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$.) If you work with other students on the HW, you should each come up with distinct examples.
4.3\#7. (a) Prove that if p is a prime then $\frac{\pi(p-1)}{p-1}<\frac{\pi(p)}{p}$.
(b) Prove that if n is composite then $\frac{\pi(n-1)}{n-1}>\frac{\pi(n)}{n}$.
4.3 \#8. Define the function $F: \mathbb{Z}^{+} \rightarrow \mathbb{Z}$ as

$$
F(n)=\left[\cos ^{2}\left(\pi \frac{(n-1)!+1}{n}\right)\right]
$$

where the outer brackets represent the greatest integer function.
(a) Prove that $F(n)=1$ if n is prime or if $n=1$, and $F(n)=0$ if n is composite.
(b) Use (a) to prove that $\pi(n)=-1+\sum_{i=1}^{n} F(i)$.

