Math 218: Elementary Number Theory

Homework 16 : Due December 2

7.2 \#5. (a) Compute $(\mu * \phi)(12)$.
(b) Prove that for all number theoretic functions f that

$$
(\mu * f)\left(p^{k}\right)=f\left(p^{k}\right)-f\left(p^{k-1}\right) .
$$

7.3 \#6. Let f be the characteristic function of the set of odd integers and g be the characteristic function of the set of even integers.
(a) Compute $(f * g)(16),(f * g)(840)$, and $(f * g)(231)$.
(b) Determine (with proof) what $(f * g)(n)$ is for any positive integer n. Your answer will likely depend on the factorization of n.
7.4 \#8. (a) Prove that $(\phi * \tau)\left(p^{a}\right)=\sigma\left(p^{a}\right)$ for any prime p.
(b) Use (a) and results from class to prove for all n that $(\phi * \tau)(n)=\sigma(n)$. (This part of the problem is really just about putting pieces together. You should not have to prove anything from scratch in this part.)

1. (a) Prove that $\mu(d) / d$ is a multiplicative function.
(b) Use (a) to prove that

$$
\phi(n)=n \sum_{d \mid n} \frac{\mu(d)}{d}
$$

(Hint: We know that multiplicative functions are completely determined by their values on powers of primes.)

