Math 218: Elementary Number Theory

Homework 15 : Due November 28

2.5 \#4. In this problem we will reprove Theorem 2.5.1 in a different way than in the book or in class. Don't assume Theorem 2.5.1 anywhere in this problem.
(a) For an arbitrary prime power p^{k}, determine what the following sum is.

$$
\sum_{d \mid p^{k}} \phi(d) .
$$

(b) Now define the function $F(n)$ as $F(n)=\sum_{d \mid n} \phi(d)$. We proved ϕ is multiplicative already and we know $F(n)$ is multiplicative by Theorem 1.11 .3 , so use that fact and the value you found in (a) to determine what $F(n)$ is.
2.5 \#5. For p prime, prove that $\sigma(p)+\phi(p)=p \tau(p)$.
$7.1 \# 3$. (a) Prove that the function $\omega(n)$ is additive but not completely additive. This function was defined in class (and in example 7.1.1) as the number of distinct primes that divide n.
(b) Is the function defined as $\nu(n)=a_{1}+a_{2}+\cdots+a_{k}$ where $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdot p_{k}^{a_{k}}$ additive? Why or why not? If it is, is it completely additive?
7.1 \# 6. Use induction and the definition of an additive function to prove Theorem 7.1.1 (Be sure to also prove the assertion that $f(1)=0$.)

