Math 218: Elementary Number Theory

Homework 14 : Due November 18

$3.3 \# 8$ (a) Find a and b so that $x^{2}+a x+b \equiv 0 \bmod 15$ has more than two solutions.
(b) Find a and b so that $x^{2}+a x+b \equiv 0 \bmod 15$ has exactly two solutions.
(c) Find a and b so that $x^{2}+a x+b \equiv 0 \bmod 15$ has no solutions.
(d) What sort of general condition can you come up with for a and b which fit into the situation described in (a) or (b) or (c)? ?
3.4 \#5abc Solve $x^{3}+x-3 \equiv 0 \bmod 7^{3}$ by starting with solutions $\bmod 7$ and building up like we did with Example 3.4.4.
$3.6 \# 5$. Let $p=23$. It is quick work to determine that $1,4,9$, and 16 are quadratic residues mod 23. On Monday in class we will learn Corollary 3.6 .3 which will tell you whether -1 is a quadratic residue or nonresidue mod 23. Starting with only those values and Theorem 3.6.2, determine all the quadratic residues and nonresidues mod 23 . As the book says, try to do this with as few computations as possible. No credit will be given if you just square the numbers 1 through $\frac{p-1}{2}$.
3.6 $\# 6$. (a) If a is a quadratic residue $\bmod p$, prove that the multiplicative inverse of a is also a quadratic residue.
(b) If a is a quadratic nonresidue $\bmod p$, what is $\left(\frac{a^{-1}}{p}\right)$, i.e. is the multiplicative inverse of a a quadratic residue or quadratic nonresidue? Why or why not?
(c) If a is a quadratic residue $\bmod p$, is the additive inverse of a a quadratic residue? Why or why not? Same question if a is a quadratic nonresidue.
3.6 \#9. Prove that $\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0$.

1. For this problem, assume p is a prime ≥ 7.
(a) Prove that at least one of 2,5 , and 10 is a quadratic residue of p.
(b) Prove that there are always two consecutive numbers in Z_{p} which are quadratic residues of p.
$3.8 \# 6$. For what odd primes is 5 a quadratic residue? (Prove your answer!)
