Math 218: Elementary Number Theory

Homework 11 : Due October 31

2.6 \#1. Find the multiplicative inverse of $5 \bmod 16$ using Euler's theorem.
$2.6 \# 8$ Let p, as always, be a prime. If $a^{p} \equiv b^{p} \bmod p$, prove that $a \equiv b \bmod p$.
2.6 \#11. If $a \equiv b \bmod p($ with p prime $)$, prove that $a^{p} \equiv b^{p} \bmod p^{2}$.
$2.6 \# 9$. (a) Find the remainder when 6^{385} is divided by 16 .
(b) What are the last two digits of the ordinary decimal form of 3^{404} ?

