Math 218: Elementary Number Theory

Homework 10 : Due October 14

2.3 \#4. Not to turn in but good practice for modular arithmetic (arithmetic in Z_{m}). Without using any computer/calculator aid calculate $(m-1)!\bmod m$ for $m=4,5,8,9,10,12,14$, and 15 . Be clever and use the arithmetic of congruences to your advantage.
2.3 \#8. (a) Prove that if m is composite and greater than 4 , then $(m-1)!\equiv 0 \bmod m$.
(b) Use (a) and problem $2.3 \# 4$ above to prove the converse of Wilson's Theorem.
$2.3 \# 11$. If p is prime, prove that $(p-2)!\equiv 1 \bmod p$.
2.4 \#2. Prove that $\phi(n)$ is even if $n>2$.
2.4 \#8. Suppose p is prime.
(a) Prove that if $p^{2} \mid n$ then $\phi(n)=p \phi(n / p)$.
(b) Prove that if $p \mid n$ but $p^{2} \nmid n$ then $\phi(n)=(p-1) \phi(n / p)$.
(c) Use (a) and (b) to prove that if n is odd then $\phi(2 n)=\phi(n)$ and if n is even then $\phi(2 n)=2 \phi(n)$.

