Math 218: Elementary Number Theory HOMEWORK 10 : DUE OCTOBER 14

- 2.3 #4. Not to turn in but good practice for modular arithmetic (arithmetic in Z_m). Without using any computer/calculator aid calculate $(m-1)! \mod m$ for m = 4, 5, 8, 9, 10, 12, 14, and 15. Be clever and use the arithmetic of congruences to your advantage.
- 2.3 #8. (a) Prove that if m is composite and greater than 4, then (m − 1)! ≡ 0 mod m.
 (b) Use (a) and problem 2.3 #4 above to prove the converse of Wilson's Theorem.
- 2.3 #11. If p is prime, prove that $(p-2)! \equiv 1 \mod p$.
- 2.4 #2. Prove that $\phi(n)$ is even if n > 2.
- 2.4 #8. Suppose p is prime.
 - (a) Prove that if $p^2 \mid n$ then $\phi(n) = p\phi(n/p)$.
 - (b) Prove that if $p \mid n$ but $p^2 \nmid n$ then $\phi(n) = (p-1)\phi(n/p)$.

(c) Use (a) and (b) to prove that if n is odd then $\phi(2n) = \phi(n)$ and if n is even then $\phi(2n) = 2\phi(n)$.