Math 218: Elementary Number Theory

Homework 1: Due August 31

§1.1 \#6. Prove for every non-zero integer a that $a \mid \pm a$.
§1.1 \# 8. Let a, b, m, and $n \in \mathbb{Z}$. Prove that if $a \mid m$ and $b \mid n$ that $a b \mid m n$.
§1.1 \# 9. Prove that if there exist integers x and y such that $9 x+12 y=n$ then $3 \mid n$.
$\S 1.1 \# 10$. Let a, b, c, and $d \in \mathbb{Z}$ and assume $a+b=c$.
(a) Prove that if d divides any two of the integers a, b, and c, then d divides all three of them. (We will use this result frequently throughout the semester.)
(b) Use (a) to prove that if $d \mid c$ then d divides both a and b or d divides neither a nor b.
(c) Give examples to show that both situations in (b) do occur.
§1.1 $\# 11$. If an integer a divides $12 n+5$ and $4 n+2$ for some $n \in \mathbb{Z}$, prove that $a= \pm 1$.

