Math 215: Linear Algebra

Problem Set 14 : Due December 4

(26 points) Make sure you are familiar with the Academic Honesty policies for this class, as detailed on the syllabus. All work is due on the given day by 3 PM Grinnell Time, or 7 PM if you LaTeX the assignment. For this assignment, show all of your computational work.

1. For this problem let $V=\mathcal{M}_{2 \times 2}$ be the vector space defined in Example 4.1.4 in the textbook. For each of the following subsets W of V, either prove W is a subspace (prove it satisfies the three conditions of the definition) or explicitly explain why it is not.
(a) (3 points) $W=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right.$ and $\left.a=1\right\}$
(b) (3 points) $W=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right.$ so that $b=0$ or $\left.c=0\right\}$. (Remember"or"in math means one or both options can happen.)
2. (4 points) Let $V=P_{3}$, defined in the discussion immediately following definition 4.1.13 in your textbook, and let $W=\left\{f(x) \in V: f^{\prime}(x) \in P_{1}\right\}$ where by $f^{\prime}(x)$ we mean the first derivative of the function $f(x)$. Either prove W is a subspace of V or explicitly explain why it is not.
3. (a) (2 points) Suppose a system of linear equations has augmented matrix

$$
\left(\begin{array}{cccc}
1 & 7 & 3 & -4 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & -2
\end{array}\right)
$$

Determine the solution set represented by this matrix.
(b) (2 points) Suppose a system of linear equations has augmented matrix

$$
\left(\begin{array}{cccccc}
-3 & 1 & 4 & 5 & 2 & 1 \\
0 & 1 & -1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 & 1 & -2
\end{array}\right)
$$

Determine the solution set represented by this matrix.
4. (6 points) Completely describe the set of solutions to the following system:

$$
\begin{aligned}
3 x_{2}-6 x_{3}+6 x_{4}+4 x_{5} & =-5 \\
3 x_{1}-7 x_{2}+8 x_{3}-5 x_{4}+8 x_{5} & =9 \\
3 x_{1}-9 x_{2}+12 x_{3}-9 x_{4}+6 x_{5} & =15 .
\end{aligned}
$$

5. (6 points) Completely describe the set of solutions to the following system:

$$
\begin{aligned}
x-y+2 z & =4 \\
2 x+3 y-z & =1 \\
7 x+3 y+4 z & =7 .
\end{aligned}
$$

