Exam 2 Review Solutions

1. Find equations for the tangent line to the curve $\mathbf{r}(t)=\left\langle 4-t^{3}, e^{-t}, \frac{1}{t+1}\right\rangle$ at $t=3$.

First we find $\vec{r}^{\prime}(t)=\left\langle-3 t^{2},-e^{-\tau}, \frac{-1}{(t+1)^{2}}\right\rangle$.
Second, notice that $\vec{r}(3)=\left\langle 4-27, e^{-3}, \frac{1}{4}\right\rangle=\left\langle-23, e^{-3}, \frac{1}{4}\right\rangle$

$$
\text { and } \vec{r}^{\prime}(3)=\left\langle-27,-e^{-3},-\frac{1}{16}\right\rangle
$$

So we use the vector equation at a line to get

$$
\begin{aligned}
& \left\langle-23, e^{-3}, \frac{1}{4}\right\rangle+t \cdot\left\langle-27,-e^{-3}, \frac{-1}{16}\right\rangle \\
& =\left\langle-23-27 t, e^{-3}-t e^{-3}, \frac{1}{4}-\frac{1}{16} t\right\rangle \\
& =\left\langle-23-27 t, e^{-3}(1-t), \frac{1}{4}\left(1-\frac{t}{4}\right)\right.
\end{aligned}
$$

This gives the parametric equations

$$
x=-29-27 t, y=e^{-3}(1-t), z=\frac{1}{4}\left(1-\frac{t}{4}\right)
$$

2. Given the parametric equations $x=t^{2}-9$ and $y=t^{2}-8 t$
(a) Find where the tangent is horizontal or vertical.

We first rewrite these parametric equations as a vector valued function, so $\vec{r}(t)=\left\langle t^{2}-9, t^{2}-8 t\right\rangle$. Then an g questions about tangent lines will require the derivative. So

$$
\vec{r}^{\prime}(t)=\langle 2 t, 2 t-8\rangle
$$

Vertical tangent lines occur chen there is no change in the x direction, so when $2 t=0$ or $t=0$
horizontal tangent lines occur when there, is no change in the y direction, so when $2 t-8=0$ or $t=4$
(b) Find the equation of the tangent line at $t=4$.

When $t=4, \quad \vec{r}(4)=\langle 16-9,16-32\rangle=\langle 7,-\mid 6\rangle$

$$
\vec{r}^{\prime}(4)=\langle 8,0\rangle
$$

So this line has corresponding vector $\langle 8,0\rangle$ and point $(7,-16)$
using the vector equation for a line we get

$$
\begin{aligned}
& \langle 7,-16\rangle+\langle 8,0\rangle t \\
& =\langle 7+8 t,-16\rangle
\end{aligned}
$$

Alternatively, a horizontal line at $t=4$ mut go through the point $(7,-16)$ so the line is $y=-16$.
3. Compute all the first and second partial derivatives of the following functions.
(a) $f(x, y)=x \ln \left(x^{2} y\right)-3 y$

$$
\begin{aligned}
& f_{x}(x, y)=x \cdot \frac{1}{x^{2} y} \cdot 2 x y+\ln \left(x^{2} y\right)=2+\ln \left(x^{2} y\right) \\
& f_{y}(x, y)=x \cdot \frac{1}{x^{2} y} \cdot x^{2}-3=\frac{x}{y}-3 \\
& f_{x x}=\frac{1}{x^{2} y} \cdot 2 x y=\frac{2}{x} \quad f_{x y}=f_{y x}=\frac{1}{y} \\
& f_{1}
\end{aligned}
$$

$$
f_{y y}=\frac{-x}{y^{2}}
$$

(b) $f(x, y)=e^{\sqrt{x^{2}+y^{2}}}$

$$
\begin{aligned}
& f_{x}(x, y)=\frac{1}{x}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot 2 x e^{\sqrt{x^{2}+y^{2}}}=\frac{x e^{\sqrt{x^{2}+y^{2}}}}{\sqrt{x^{2}+y^{2}}} \\
& f_{y}(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot x y e^{\sqrt{x^{2}+y^{2}}}=\begin{array}{l}
\frac{e^{\sqrt{x^{2}+y^{2}}}}{\sqrt{x^{2}+y^{2}}}
\end{array} \sqrt{\frac{e^{\sqrt{x^{2}+y^{2}}\left(x^{2}+\sqrt{x^{2}+y^{2}}-x^{2} \sqrt{x^{2}+y^{2}}\right)}}{x^{2}+y^{2}}} \text { ل}
\end{aligned}
$$

$$
\begin{aligned}
& f_{x x}=\frac{\sqrt{x^{2}+y^{2}}\left(x \frac{1}{y}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot x x e^{\sqrt{x^{2}+y^{2}}}+e^{\left.\sqrt{x^{2}+y^{2}}\right)-\frac{1}{x} \sqrt{x^{2}+y^{2}} \cdot 2 x \cdot x \cdot e^{\sqrt{x^{2}+y^{2}}}}\right.}{\left(\sqrt{x^{2}+y^{2}}\right)^{2}} \\
& \text { Since } x \text { any } y \text { are symmetric we Know } f_{y y}=\frac{e^{\sqrt{x^{2}+y^{2}}}\left(y^{2}+\sqrt{x^{2}+y^{2}}-y^{2} \sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}}
\end{aligned}
$$

$$
f_{x y}=f_{y x}=x\left(\frac{\sqrt{x^{2}+y^{2} \cdot \frac{1}{2}}\left(x^{2}+y^{-}\right)^{-1 / 2} \cdot x y e^{\sqrt{x^{2}+y^{2}}}-e^{\sqrt{x^{2}+y^{2}}} \frac{1}{x}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot 2 y}{\left(\sqrt{x^{2}+y^{2}}\right)^{2}}=\frac{x y e^{\sqrt{x^{2}+y^{2}}}\left(1-\frac{1}{\sqrt{x^{2}+y^{2}}}\right.}{x^{2}+y^{2}}\right.
$$

4. Compute the gradient for the function $f(x, y)=\cos \left(x^{2}+y\right)$.

$$
\begin{aligned}
\nabla_{f}(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \\
& =\int\left\langle-\sin \left(x^{2}+y\right) \cdot 2 x,-\sin \left(x^{2}+y\right)\right\rangle
\end{aligned}
$$

5. Find an equation of the tangent plane of the function $f(x, y)=\frac{x}{\sqrt{y}}$ at $(4,4)$.

$$
\begin{array}{ll}
f_{x}(x, y)=\frac{1}{\sqrt{y}} \\
f_{y}(x, y)=\frac{-1}{2} \times y^{-3 / 2}=\frac{-x}{2 \sqrt{y^{3}}} & f_{x}(4,4)=\frac{1}{2} \\
f(4,4)=2 & f_{y}(4,4)=\frac{-4}{2 \cdot 8}=\frac{-1}{4}
\end{array}
$$

Putting this together, we get

$$
z=2+\frac{1}{2}(x-4)-\frac{1}{4}(y-4)
$$

6. (a) Use the chain rule to find $\frac{d f}{d t}$ when $f(x, y)=\ln x+\ln y, x=\cos t$, and $y=t^{2}$.

$$
\begin{aligned}
\frac{d f}{d t} & =\frac{\partial t}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial t}{\partial y} \cdot \frac{d y}{d t} \\
& =\frac{1}{x} \cdot(-\sin t)+\frac{1}{y} \cdot 2 t \\
& =\frac{1}{\cos t}(-\sin t)+\frac{1}{t^{2}} \cdot 2 t=-\tan t+\frac{2}{t}
\end{aligned}
$$

(b) Use the chain rule to find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ where $f(x, y)=x^{2}+\sin (x y), x=e^{s+t}$, and $y=s+t$.

We need 4 pieces of information:

$$
\begin{array}{ll}
\frac{\partial t}{\partial x}=2 x+y \cos (x y) & \frac{\partial x}{\partial s}=e^{s+t}
\end{array} \frac{\partial y}{\partial s}=1
$$

So

$$
\begin{aligned}
\frac{\partial t}{\partial s} & =(2 x+y \cos (x y)) e^{s+t}+x \cos (x y) \cdot 1 \\
& =2 e^{s+t}+(s+t) \cos \left(e^{s+t}(s+t)\right) e^{s+t}+e^{s+t} \cos \left(e^{s+t}(s+t)\right)
\end{aligned}
$$

In fact, since $\frac{\partial x}{\partial s}=\frac{\partial x}{\partial t}$ and $\frac{\partial y}{\partial s}=\frac{\partial y}{\partial \tau}$ what we wrote above is also $\frac{\partial f}{\partial \tau}$
7. (a) Find the directional derivative of $f(x, y)=x^{2}+4 y^{2}$ at the point (3,4) in the direction pointing toward the origin.
First, what is \vec{u} ?
Points in dicertion of green

$\vec{v}=\langle-3,-4\rangle$ But we need the unit vector. $|\vec{v}|=5$
So $\vec{u}=\left\langle\frac{-3}{5}, \frac{-4}{5}\right\rangle$.
Second, what is $\nabla_{t}(3,4)$?
Then $D_{\vec{u}} f=\nabla_{f} \cdot \vec{u}$
$\nabla_{f}=\langle 2 x, 8 y\rangle$ hence $\nabla_{f}(3,4)=\langle 6,32\rangle$

$$
\begin{aligned}
& =\langle 6,32\rangle \cdot\left\langle\frac{-3}{5}, \frac{-4}{5}\right\rangle \\
& =\frac{-18}{5}-\frac{128}{5}=\frac{-146}{5}
\end{aligned}
$$

(b) Is this function increasing or decreasing at the point $(3,4)$ in the direction pointing toward the origin?

Since the value se found in (a) is negative, the rate of change is negative and so the function is decreasing.
8. Find the linearization $L(x, y)$ of $f(x, y)=x^{2} y^{3}$ at the point $(2,1)$.

$$
\begin{array}{ll}
f_{x}(x, y)=2 x y^{3} & f_{x}(2,1)=2 \cdot 2 \cdot 1=4 \\
f_{y}(x, y)=3 x^{2} y^{2} & f_{y}(2,1)=3 \cdot 4 \cdot 1=12 \\
& f(2,1)=4
\end{array}
$$

Putting everything together gives

$$
\begin{aligned}
L(x, y) & =f_{x}(2,1)(x-2)+f_{y}(2,1)(x-1)+f(2,1) \\
& =4(x-2)+12(x-1)+4
\end{aligned}
$$

