Exam 1 Review Solutions

1. (a) Sketch the curve defined by the parametric equations $x=1+t^{-1}$ and $y=t^{2}$. Indicate with an arrow the direction which the curve is traced as t increases.

(b) Eliminate the parameter in the equations from (a) to find a Cartesian equation of the curve.

Solve for t to get $t^{-1}=x-1$ or $t=\frac{1}{x-1}$. Plugging in to the equation for y gives $\frac{1}{y=\frac{1}{(x-1)^{2}}}$
2. Given the vectors $\vec{u}=\langle 1,-3,2\rangle$ and $\vec{v}=\langle-2,1,5\rangle$ and $\vec{w}=\langle 3,2,2\rangle$, compute
(a) $\vec{u}+\vec{v}$

$$
\langle 1,-3,2\rangle+\langle-2,1,5\rangle=\langle\langle-1,-2,7\rangle
$$

(b) $\vec{u} \cdot \vec{v}$

$$
\begin{aligned}
\langle 1,-3,2\rangle \cdot\langle-2,1,5\rangle=1 \cdot(-2)+(-3) \cdot 1+2 \cdot 5 & =-2-3+10 \\
& =5
\end{aligned}
$$

(c)

$$
\begin{aligned}
\vec{u} \times \vec{w}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
1 & -3 & 2 \\
3 & 2 & 2
\end{array}\right| & =\vec{\imath}\left|\begin{array}{cc}
-3 & 2 \\
2 & 2
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
1 & 2 \\
3 & 2
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & -3 \\
3 & 2
\end{array}\right| \\
& =\vec{\imath}(-6-4)-\vec{\jmath}(2-6)+\vec{k}(2-(-4)) \\
& =-10 \vec{\imath}+4 \vec{\jmath}+11 \vec{k} \\
& =\langle-10,4,11\rangle
\end{aligned}
$$

(d) Which direction is the vector $\vec{u} \times \vec{w}$ pointing?

to curd our fingers from \vec{u} to \vec{w} in the direction of the shortest + angle, our thumb must face into the page or roughly in the negative X axis $_{\text {direction }}$
3. (a) Find a vector in the direction of $\vec{u}=\langle 4,0,-3\rangle$ but with magnitude 7 .
we first find the unit vector in the directions of \vec{u}. This is

$$
\begin{aligned}
& \frac{\vec{u}}{|\vec{u}|}=\langle 4,0,-3\rangle \cdot \frac{1}{5}=\left\langle\frac{4}{5}, 0,-\frac{3}{5}\right\rangle . \\
& |\vec{u}|=\sqrt{16+0+9}=\sqrt{25} \\
& =5
\end{aligned}
$$

Thin to get a vector of magnitude 7 in that direction, u multiply the unit vector by 7 to get $\left\langle\frac{4}{5}, 0, \frac{-3}{5}\right\rangle \cdot 7=\left\langle\frac{28}{5}, 0, \frac{-21}{5}\right\rangle$
(b) Find a vector which is orthogonal to \vec{u}.

We need to find a vector $\langle a, b, c\rangle$ so that $\vec{u} \cdot\langle a, b, c\rangle=0$ or

$$
\left.\begin{array}{c}
\langle 4,0,-3\rangle \cdot\langle a, b, c\rangle=4 a+0 \cdot b-3 . c=0 \\
\begin{array}{c}
\text { or } 4 a-3 c=0 . \\
\text { Let } a=3, b=1, c=4 \\
\text { Coranyothr value } \\
\text { of } b \text { tob. }
\end{array}
\end{array}\right\rangle\left\langle\begin{array}{l}
\text { so the vector } \\
\langle 3,1,-\rangle .
\end{array}\right.
$$

4. Where does the line $\vec{r}(t)=\langle 2,1,4\rangle+\langle-1,-5,6\rangle t$ cross the $x y$-plane?

To find where the line crosses the $x y$-plane means to find where $z=0$ on the line.
This is when $4+6 \tau=0$, or $\tau=-2 / 3$.

$$
\begin{aligned}
A+t=-2 / 3, \vec{r}(\tau) & =\langle 2-(-2 / 3), 1-5(-2 / 3), 4+6(-2 / 3)\rangle \\
& =\langle 8 / 3,13 / 3,0\rangle
\end{aligned}
$$

5. (a) Find vector and scalar equations of the plane through the point $(0,1,4)$ and with normal vector $\langle 4,-3,-5\rangle$.

We know $\vec{n} \cdot \vec{r}=\vec{n} \cdot \vec{r}_{0}$ is the vector equation. $\overline{16}$, this example we get

$$
\langle y,-3,-5\rangle \cdot\langle x, y, z\rangle=\langle 4,-3,-5\rangle \cdot\langle 0,1,4\rangle
$$

To find the scalar equation, we multiply the vector equation out to get

$$
4 x-3 y-5 z=0-3-20
$$

$4 x-3 y-5 z=-23 \Leftarrow$ this is the linear equation

$$
\frac{\text { or }}{4 x-3(y-1)-5(z-4)}=0
$$

(b) Find vector and scalar equations of the plane through the points $(-3,1,1),(5,2,-1)$, and (1,7,-2).
wa need to find the normal vector. To dothis, we need to identify two vectors on the plane and then take their cross product.
The vectors $\langle-3,1,1\rangle-\langle 5,2,-1\rangle=\langle-8,-1,2\rangle=\vec{u}$ and
$\langle-3,1,1\rangle-\langle 1,7,-2\rangle=\langle-4,-6,3\rangle$ are both on the plane
Then $\vec{u} \times \vec{v}=\langle-8,-1,2\rangle \times\langle-4,-4,3\rangle=$

So the vector equation for this plane is
Answers mayding

$$
\begin{aligned}
& \text { vary de whack } \\
& \text { on wo r }
\end{aligned}
$$

$$
\vec{n} \cdot \vec{r}=\vec{n} \cdot \vec{r}_{0}
$$

$$
\langle 9,16,44\rangle \cdot\langle x, y, z\rangle=\langle 9,16,44\rangle \cdot\langle 1,7,-2\rangle
$$

While the scalar equation for this plane is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\vec{\imath} & \vec{j} & \vec{k} \\
-8 & -1 & 2 \\
-4 & -6 & 3
\end{array}\right|=\vec{\imath}\left|\begin{array}{cc}
-1 & 2 \\
-6 & 3
\end{array}\right|-\vec{\jmath}\left|\begin{array}{cc}
-8 & 2 \\
-4 & 3
\end{array}\right|+\vec{k}\left|\begin{array}{c}
-8 \\
-4 \\
-4
\end{array}\right| \\
& =\langle-3+12,-(-24+8)+48-4\rangle=\langle 9,16,44\rangle=\vec{n}
\end{aligned}
$$

6. Two particles travel along the lines given by $\overrightarrow{r_{1}}(t)=\langle 3 t-1,4 t+2, t-2\rangle$ and $\overrightarrow{r_{2}}(t)=\langle t-2,4 t-4,-t\rangle$.
(a) Do the particles collide? If so, when?

We need to find if both curves hit the same point at the same time. Is there a t so that

$$
\left.\begin{array}{l}
1+-1=t-2 \\
4 t+2=4 t-4 \\
t-2=-\tau
\end{array}\right\} \text { simultaneously? }
$$

No. Notice that the second equation is impossible for all t.
there we other reasons too.
(b) Do their paths intersect? If so, where?

We need to determine if there we times t_{1} and t_{2} where the first particle is at a particular point at time t_{1} and the $2^{\text {nd }}$ particle is at the same point at time t_{2}.
to do this, very to find t_{1} and t_{2} values so that
(1) $3 t_{1}-1=t_{2}-2$
(2) $4 t_{1}+2=4 t_{2}-4$
(3) $t_{1}-2=-t_{2}$

ping $t_{1}=1 / 4$ into (2)

$$
\text { to set } \tau_{2}=2-\frac{1}{4}=7 / 4
$$

Check (1) o (2) to confirm:

$$
\begin{aligned}
& 3\left(\frac{1}{4}\right)-1=-\frac{1}{4}=\frac{7}{4}-2 \\
& 4\left(\frac{1}{4}\right)+2=3=4\left(\frac{7}{4}\right)-4
\end{aligned}
$$

So these partides collide at $\quad x=\frac{-1}{4} \quad y=3 \quad z=\frac{-7}{4}$

