Section 15.2

Two views of the function $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$. The limit as (x, y) approaches $(0,0)$ is not defined since the values along the x and y axis tend to different numbers.

Two views of the contour plot for this function. There is no way to get arbitarily close to $(0,0)$ from every direction.

A plot of the function $f(x)=\frac{x^{2} \cdot y}{x^{4}+y^{2}}$

The surface above with the equation $y=x^{2}$ plotted in black. Notice that the limit as (x, y) approaches $(0,0)$ does not exist since along the line in black the graph approaches $\frac{1}{2}$ but along straight lines, it approaches 0.

The function $f(x, y)=\frac{x \cdot y}{x^{2}+y^{2}}$ which does approach 0 along the x and y axis, but not along the line $y=x$, which is plotted in black.

