Exam 2 Review Solutions

(1) Differentiate the following functions. (a) $f(x) = \tan(x + \tan x)$ Chain Rule $h(x) = +\alpha \times \qquad h'(x) = \sec^{3}x$ $g(x) = x + \tan x \qquad g'(x) = 1 + \sec^{3}x$ $f'(x) = h'(g(x)) \cdot g'(x) = \sec^{2}(x + \tan x) \cdot (1 + \sec^{3}x)$ $h'(g(x)) \qquad g'(x)$

(b)
$$g(r) = \sqrt{9 + r + \sin 3r}$$
 Chann Rule
 $h(r) = \sqrt{r} = r^{\frac{1}{2}}$ $h'(r) = \frac{1}{2}r^{\frac{1}{2}}$
 $f(r) = 9 + r + \sin 3r$ $g'(r) = 1 + \cos(3r) \cdot 3$ Chain rule
 $g'(r) = h'(f(r)) \cdot g'(r) = \frac{1}{2}(9 + x + \sin(3x))^{\frac{1}{2}}$ $(1 + \cos(3x) \cdot 3)$
 $h'(f(r))$ $f'(r)$

Chain Rule again!
(c)
$$x(t) = (\cot(t^2))^5$$

 $f(t) = t^5$
 $g(t) = \omega t(t)$
 $h(t) = t^2$
 $h'(t) = 2t$
 $x'(t) = f'(g(h(t)))$. $g'(h(t)) \cdot h'(t) = 5(\cot(t^2))^4$. $(-\csc^2(t^2))2t$
 $f'(g(h(t)))$. $g'(h(t)) \cdot h'(t) = 5(\cot(t^2))^4$. $(-\csc^2(t^2))2t$
 $f'(g(h(t)))$. $f'(t) = f'(t)$

(2) Find f'(x) by implicit differentiation for $4xy - \tan(y) = 3x^2 + \sin(x)$.

Taking a derivative all both sides

$$4x \frac{dy}{dx} + 4y - \sec^2(y) \cdot \frac{dy}{dx} = 6x + \cos(x)$$

productrule
Factoring $\frac{dy}{dx}$ out
 $\frac{dy}{dx}(4x - \sec^2(y)) + 4y = 6x + \cos(x)$
Move $4y$ to the other side
 $\frac{dy}{dx}(4x - \sec^2(y)) = 6x + \cos(x) - 4y$
Divide by $4x - \sec^2(y)$ on both sides \Rightarrow
 $\frac{dy}{dx} = \frac{6x + \cos(x) - 4y}{4x - \sec^2(y)}$

(3) Verify that the function $f(x) = 4 + \sqrt{x - 1}$ on the interval [1,5] satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers *c* that satisfy the conclusion of the Mean Value Theorem.

This function is continuous on [1,5] since $\sqrt{x-1}$ is defined for $x \ge 1$. The function U differentiable on (1,5) since we can compute the derivative $f'(x) = \frac{1}{2}(x-1)^{\frac{1}{2}}$. $1 = \frac{1}{2\sqrt{x-1}}$ (Notice it is not differentiable Nov consider $\frac{f(5)-f(0)}{5-1} = \frac{(4+\sqrt{4})-4+\sqrt{1-1}}{4} = \frac{(6-4)}{4} = \frac{1}{2}$ So we find c so that $f'(c) = \frac{1}{2}$ $\frac{1}{2\sqrt{c-1}} = \frac{1}{2}$ if $\frac{1}{\sqrt{c-1}} = 1$ or $\sqrt{c-1} = 1$ or c-1 = 1 so c=2

(4) Use the following table of values to calculate the derivative of the given functions at x = 2.

x	g(x)	h(x)	g'(x)	h'(x)
2	5	4	-3	9
4	3	2	2	3

(a) $f(x) = \frac{g(x)}{h(x)}$ start with quotient rule

$$f(x) = \frac{h(x) \cdot g'(x) - g(x) \cdot h'(x)}{h^{2}(x)} \qquad f'(2) = \frac{h(2) \cdot g'(2) - g(2) h'(2)}{h'(2)} = \frac{4 \cdot (-3) - 5 \cdot 9}{16} = \frac{-57}{16}$$

(b)
$$f(x) = g(h(x))$$
 stort with chain rule

$$f'(x) = g'(h(x)) \cdot h'(x)$$

$$f'(2) = g'(h(2)) \cdot h'(2) = g'(4) \cdot 9 = (-2) \cdot 9 = (-18)$$

(5) What is the equation for the tangent line of $x^2 + (3y)^2 = 13$ at the point (2,1)?

For the tangent line we need the dope or x=2, y=1. We use implicit differentiation

$$2x + 2 \cdot (3y) 3 \frac{dy}{dx} = 0$$

$$1 \frac{3y}{dx} = -2x$$

$$\frac{dy}{dx} = \frac{-2x}{18y} = \frac{-x}{14y}$$

$$a + (2,1) + hus$$

$$1s = \frac{-2}{9} = -\frac{2}{9}$$
Then using point-slope formula
$$\frac{y-1 = -\frac{2}{9}(x-2)}{y-1 = -\frac{2}{9}(x-2)}$$

(6) A girl starts at a point *A* and runs east at a rate of 10 feet/second. One minute later, another girl starts at *A* and runs north at a rate of 8 feet/second. At what rate is the distance between them changing 1 minute after the second girl starts?

Y Z	Known i	rates:	$\frac{dx}{d\tau} = 10^{5}$	+/sec	
A ×	unleno	un rate:	dr dr Jr		
equation:	$\chi^{2} + \gamma^{2} = 2^{2}$			$\& 2mnut \\ X = 120.10 \\ y = 40.8$	b = 1200 b = 480
differitiate	× dx + 2y da	y = 22 dz		$Z=\sqrt{\chi^2+y}$ $Z\approx 1294$	2.4
×d	$\frac{\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2}$				
plug in val	$\frac{d}{dt} = \frac{d}{dt}$	1200.10	<u>+ 480.8</u> 2.4	- 2 12.3	ft/sec

(7) Let R(x) be a function that measures a company's revenue R from car sales (in thousands of dollars) in terms of advertising expenditures, x (also in thousands of dollars). Suppose the company is spending \$100,000 on advertising right now. If R'(100) = -10 should the company spend more or less on advertising to increase revenue? Why?

Since the derivative is negative, this means the function is decreasing. This means that as X in creaks, R decreases and as X decreases, Rincreases. Thus the comp only should decrease spending to increase revenue. (8) A cone-shaped coffee filter of radius 6 cm and depth 10 cm contains water, which drips out through a hole at the bottom so the volume of the water in the filter decreases at a rate of 1.5 cm^3 /sec. How fast is the water level falling when the

depth is 8 cm? (Hint: the volume of a cone is
$$\frac{1}{3}\pi r^2h$$
.)
This problem regures you to know that for a cone,
the ratio of the height to redive is the same as the
water decreases
 $\int \int_{T}^{T} \int_{T}$

(b) Find the intervals on which *f* is increasing or decreasing.

(c) Use the first derivative test to find local maximum and minimum values of f.

At $X = \frac{\pi}{3}$ the derivative goes from positive to regative SD this is a maximum. At $X = \frac{2\pi}{3}$ the derivative goes from regative to positive SD this is a minimum. (10) Let $f(x) = -x^4 + 2x^3 + x^2 - 2$. (a) Find the critical number(s) of the function. $f'(x) = -4x^3 + 6x^2 + 2x$ $= -2x(2x^2 - 3x - 1)$ Critical # sat X = 0 or $3 \pm \sqrt{9 + 42}$ (b) Using the second derivative test, find the local maximum and minimum values

(b) Using the second derivative test, find the local maximum and minimum values of f. $f''(x) = -i x^2 + i x + 2$

 $f'(0) = 2 \longrightarrow f \text{ minimum}$ $f'(\frac{3+117}{4}) = -12\left(\frac{3+117}{4}\right)^{2} + 12\left(\frac{3+117}{4}\right) + 2 \approx -14.685 \text{ maximum}$ $f\left(\frac{3-117}{4}\right) = -12\left(\frac{3-177}{4}\right)^{2} + 12\left(\frac{3-117}{4}\right) + 2 \approx -2.315 \text{ maximum}$

(c) Find the interval(s) where the function is concave upward and concave downward.

We need to find dreve f'(x) > 0 and f''(x) < 0. First we find the 2eros of f''(x) using the guadratic fimula. $x = \frac{-12 \pm \sqrt{1194 + 96}}{-24} = \frac{-12 \pm \sqrt{1240}}{-24} = \frac{1}{2} \pm \frac{\sqrt{117}}{24} = \frac{1}{2} \pm \frac{\sqrt{117}}{24} = \frac{1}{2} \pm \frac{\sqrt{117}}{4}$ (d) Find the inflection point(s). f''(-1) = -12 - 12 + 2 = -22f''(-1) = -12 - 12 + 2 = -22

(13) Find the following limits.

(a)
$$\lim_{x \to \infty} \frac{3x^2 - x + 4}{5x - 7x^2} \text{ Multiply top and bottom by } \frac{1}{x^2}:$$

$$= \lim_{x \to \infty} \frac{(3x^2 - x + 4) \cdot \frac{1}{x^2}}{(5x - 7x^2) \cdot \frac{1}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} + \frac{1}{x^2}}{\frac{5}{x} - 7} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} + \frac{1}{x^2}}{\frac{5}{x} - 7} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} + \frac{1}{x^2}}{\frac{5}{x} - 7} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{1}{x^2}}{\frac{5}{x} - 7}$$

$$= \lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} \frac{1}{x^2} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} + \frac{1}{x^2}}{\frac{5}{x} - 7} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{1}{x^2}}{\frac{5}{x} - 7}$$

$$= \lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} \frac{1}{x^2} = \lim_{x \to \infty}$$

(b)
$$\lim_{x \to \infty} \frac{x^2}{x^3 - 3x^2 + x - 1}$$

Nou multiply by $\frac{1}{x^3}$ toget:

$$\lim_{x \to \infty} \frac{1}{x^2 + x^2}$$

$$\lim_{x \to \infty} \frac{1}{x^2 + x^2} = \lim_{x \to \infty} \frac{1}{x^2 + x^2} = \lim_{x \to \infty} \frac{1}{x^2 + x^2}$$

Sume difference

$$\lim_{x \to \infty} \frac{1}{x^2 - x^2} = \lim_{x \to \infty} \frac{1}{x^2 + x^2} = \lim_{x \to \infty} \frac{1$$

(c)
$$\lim_{x \to -\infty} \frac{4x^3 + 2x^2 - 1}{2x^2 - 1}$$

Here multiply by $\frac{1}{x^2}$ quotient limit law
 $\lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{2 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{4x + 2 - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to -\infty} \frac{1}{x - \frac{1}{x}} = \lim_{x \to -\infty} \frac{1}{x$

the num d

(d)
$$\lim_{x \to \infty} \sqrt{5x^4 - 3x + 1} - \sqrt{5x^4 - 2x^2 + x + 4} \quad \text{multiply by the conjugate}$$

$$= \lim_{x \to \infty} \frac{5x^4 - 3x + 1 - 5x^4 + 2x^2 - x - 4}{\sqrt{5x^4 - 3x + 1}} \quad (\lim_{x \to x^2} - \frac{1}{x - 4x - 3}) \quad (x - 4x - 3) \quad (x -$$

(14) A cylindrical container, open at the top and of capacity 24π cubic inches is to be manufactured. If the cost of the material used for the bottom of the container is 6 cents per square inch, and the cost of the material used for the curved part is 2 cents per square inch, find the dimension which will minimize the cost. (Hint: The bottom of the cylinder is a circle and the curved part is really a rectangle--visualize cutting open a can and unfolding the curved part -- with height *h* and length the circumference of the bottom.)

(15) A poster of area 6000 cm² has blank margins of width 10 cm on both the top and bottom and 6cm on each side. Find the dimensions that maximize the printed area.

