Exam 2 Review Solutions
(1) Differentiate the following functions.
(a) $f(x)=\tan (x+\tan x)$ Chain Rule

$$
\begin{array}{ll}
h(x)=\tan x & h^{\prime}(x)=\sec ^{2} x \\
g(x)=x+\tan x & g^{\prime}(x)=1+\sec ^{2} x \\
f^{\prime}(x)=h^{\prime}(g(x)) \cdot g^{\prime}(x)=\underbrace{\sec ^{2}(x+\tan x)}_{h^{\prime}(g(x))} \cdot \underbrace{\left(1+\sec ^{2} x\right)}_{g^{\prime}(x)}
\end{array}
$$

(b) $g(r)=\sqrt{9+r+\sin 3 r}$ Chain Rule

$$
\begin{array}{ll}
h(r)=\sqrt{r}=r^{1 / 2} & h^{\prime}(r)=\frac{1}{2} r^{-1 / 2} \\
f(r)=9+r+\sin 3 r \quad & g^{\prime}(r)=1+\frac{\cos (3 r) \cdot 3}{r} \quad \text { Chain rule } \\
h^{\prime}(f(r)) & h^{\prime} \text { here to } \\
g^{\prime}(r)=h^{\prime}(f(r)) \cdot g^{\prime}(r)=\frac{\frac{1}{2}(9+x+\sin (3 x))^{-1 / 2}}{(1+\cos (3 x) \cdot 3)}
\end{array}
$$

Chain Rule again!
(c) $x(t)=\left(\cot \left(t^{2}\right)\right)^{5}$

$$
\begin{array}{ll}
\begin{array}{ll}
(c) x(t)=\left(\cot \left(t^{2}\right)\right)^{3} & f^{\prime}(\tau)
\end{array}=5 \tau^{4} \\
f(t)=t^{5} & g^{\prime}(\tau)=-\csc ^{2}(\tau) \\
g(t)=\cot (t) & h^{\prime}(\tau)=2 t \\
h(\tau)=t^{2} & \underbrace{5\left(\cot \left(\tau^{2}\right)\right)^{4}}_{f^{\prime}(g(h(\tau)))} \cdot \underbrace{\left(-\csc ^{2}\left(\tau^{2}\right)\right)}_{g^{\prime}(h(\tau))} \frac{2 \tau}{x^{\prime}(\tau)=f^{\prime}(g(h(t))) \cdot g^{\prime}(h(t)) \cdot h^{\prime}(\tau)}
\end{array}
$$

(2) Find $f^{\prime}(x)$ by implicit differentiation for $4 x y-\tan (y)=3 x^{2}+\sin (x)$.

Taking a derivative of both sides

$$
4 x \frac{d y}{d x}+4 \cdot y-\sec ^{2}(y) \cdot \frac{d y}{d x}=6 x+\cos (x)
$$

productrule
chain rule

Factoring $\frac{d y}{d x}$ out

$$
\frac{d y}{d x}\left(4 x-\sec ^{2}(y)\right)+4 y=6 x+\cos (x)
$$

move $4 y$ to the other side

$$
\begin{aligned}
& \frac{d y}{d x}\left(4 x-\sec ^{2}(y)\right)=6 x+\cos (x)-4 y \\
& \text { Divide by } 4 x-\sec ^{2}(y) \text { on both sides } \rightarrow
\end{aligned}
$$

(3) Verify that the function $f(x)=4+\sqrt{x-1}$ on the interval [1,5] satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

This function is continuous on $[1,5]$ since $\sqrt{x-1}$ is defined for $x \geqslant 1$. The function 4 differentiable on $(1,5)$ since we can compute the derivative $f^{\prime}(x)=\frac{1}{2}(x-1)^{-1 / 2} \cdot 1=\frac{1}{2 \sqrt{x-1} \quad \text { (Notice it is not difteratiable }} \begin{aligned} & \text { at } x=1 .)\end{aligned}$
Nov consider $\frac{f(5)-f(1)}{5-1}=\frac{(4+\sqrt{4})-4+\sqrt{1-1}}{4}=\frac{6-4}{4}=\frac{1}{2}$
So we find c so that $f^{\prime}(c)=\frac{1}{2}$

$$
\frac{1}{2 \sqrt{c-1}}=\frac{1}{2} \text { if } \frac{1}{\sqrt{c-1}}=1 \text { or } \sqrt{c-1}=1 \text { or } c-1=1 \text { so } c=2
$$

(4) Use the following table of values to calculate the derivative of the given functions at $x=2$.

x		$g(x)$	$h(x)$	$g^{\prime}(x)$	
	2	5	4	-3	9
4	3	2	2	3	

(a) $f(x)=\frac{g(x)}{h(x)}$ start with quotient rule

$$
f(x)=\frac{h(x) \cdot g^{\prime}(x)-g(x) \cdot h^{\prime}(x)}{h^{2}(x)} \quad f^{\prime}(2)=\frac{h(2) \cdot g^{\prime}(2)-g(2) h^{\prime}(2)}{h^{2}(2)}=\frac{4 \cdot(-3)-5 \cdot 9}{16}=\frac{-57}{16}
$$

(b) $f(x)=g(h(x))$ start with chain rule

$$
\begin{align*}
& f^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& f^{\prime}(2)=g^{\prime}(h(2)) \cdot h^{\prime}(2)=g^{\prime}(4) \cdot 9=(-2) \cdot 9=
\end{align*}
$$

(5) What is the equation for the tangent line of $x^{2}+(3 y)^{2}=13$ at the point $(2,1)$?

For the tangent line we need the slope at $x=2, y=1$.
we use implicit differentiation

$$
\begin{gathered}
2 x+2 \cdot(3 y) 3 \frac{d y}{d x}=0 \\
18 y \frac{d y}{d x}=-2 x \\
\frac{d y}{d x}=\frac{-2 x}{18 y}=\frac{-x}{9} \frac{1}{9} \\
a+(2,1) \text { this } \\
\text { is } \frac{-2}{9 \cdot 1}=\frac{-2}{9}
\end{gathered}
$$

Then using point-slope formula

$$
y-1=\frac{-2}{9}(x-2)
$$

(6) A girl starts at a point A and runs east at a rate of 10 feet/second. One minute later, another girl starts at A and runs north at a rate of 8 feet $/$ second. At what rate is the distance between them changing 1 minute after the second girl starts?

known rates:

$$
\begin{aligned}
& \frac{d x}{d \tau}=10 \mathrm{ft} / \mathrm{scc} \\
& \frac{d y}{d \tau}=8 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

unknown rate: $\frac{d z}{d t}$
@ 2 minutes
equation: $x^{2}+y^{2}=z^{2}$

$$
\begin{aligned}
& x=120.10=1200 \\
& y=60.8=480 \\
& z=\sqrt{x^{2}+y^{2}} \\
& z \approx 1292.4
\end{aligned}
$$

$$
\frac{x \frac{d x}{d t}+y \frac{d y}{d \tau}}{z}=\frac{d z}{d z}
$$

plug in values.

$$
\frac{d z}{d \tau}=\frac{1200.10+480.8}{1292.4} \approx 12.3 \mathrm{ft} / \mathrm{sec}
$$

(7) Let $R(x)$ be a function that measures a company's revenue R from car sales (in thousands of dollars) in terms of advertising expenditures, x (also in thousands of dollars). Suppose the company is spending $\$ 100,000$ on advertising right now. If $R^{\prime}(100)=-10$ should the company spend more or less on advertising to increase revenue? Why?

Since the derivative is negative, this means the function is decreasing.
This means that as x increases, R decreases and as x decreases, Rincreases. Thus the comp any should decrease spading to increase revenue.
(8) A cone-shaped coffee filter of radius 6 cm and depth 10 cm contains water, which drips out through a hole at the bottom so the volume of the water in the filter decreases at a rate of $1.5 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the water level falling when the depth is 8 cm ? (Hint: the volume of a cone is $\frac{1}{3} \pi r^{2} h$.)
This problem requires you to know that for a cone, the ratio of the height to radius is the same as the water decreases

$$
\text { So } \frac{h}{r}=\frac{10}{6} \text { or } r=\frac{6 h}{10}=\frac{3 h}{5}
$$

equation relating $v=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{2 h}{5}\right)^{2} \cdot h=\frac{3 \pi}{25} h^{3}$
the variables in the rate
Take a derivative $\frac{d V}{d \tau}=\frac{9 \pi}{25} h^{2} \cdot \frac{d h}{d \tau}$ plugin
Lith respect to tine

$$
\frac{d h}{d \tau}=\frac{25}{9 \pi h^{2}} \cdot \frac{d V}{d \tau}
$$

(9) Let $f(x)=\cos x+\frac{\sqrt{3}}{2} x$ on the interval $0 \leq x \leq 2 \pi$.

$$
\begin{aligned}
& Q h=8 \quad \frac{-3}{2} \\
& \frac{d h}{d \tau}=\frac{25}{9 \pi \cdot 8^{2}} \cdot(-1.5)= \\
& \frac{-25}{384 \pi} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

(a) Find the critical numbers) of the function.

We find where $f^{\prime}(x)=0$ or undefined.

$$
\begin{aligned}
& f^{\prime}(x)=-\sin x+\frac{\sqrt{3}}{2} \leftarrow \text { never undefined. } \\
& 0=-\sin x+\frac{\sqrt{2}}{2} \\
& \sin x=\frac{\sqrt{3}}{2} \\
& x=\pi / 3 \text { and } x=\frac{2 \pi}{3}
\end{aligned}
$$

(b) Find the intervals on which f is increasing or decreasing.

By increasing/decreasing test
increasing $\left(0, \frac{\pi}{3}\right) \cup\left(\frac{2 \pi}{3}, 2 \pi\right)$ and decreasing $\left(\frac{\pi}{3}, \frac{2 \pi}{3}\right)$
(c) Use the first derivative test to find local maximum and minimum values of f.

At $x=\frac{\pi}{3}$ the derivative goes from positive to negative so this is a maximum.
At $x=\frac{2 \pi}{3}$ the derivative goes from neg ative to positive so this is a minimum.

$$
\begin{aligned}
& f\left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}\left(\frac{\pi}{3}\right)=\frac{1}{2}+\frac{\sqrt{3}}{6} \pi \\
& f\left(\frac{2 \pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)+\frac{\sqrt{3}}{2}\left(\frac{2 \pi}{3}\right)=-\frac{1}{2}+\frac{\sqrt{3}}{3} \pi
\end{aligned}
$$

(10) Let $f(x)=-x^{4}+2 x^{3}+x^{2}-2$.
(a) Find the critical numbers) of the function.

$$
\begin{array}{rlr}
f^{\prime}(x)= & -4 x^{3}+6 x^{2}+2 x \\
& =-2 x\left(2 x^{2}-3 x-1\right) \\
& \text { critical \#sat } x=0 \text { or } \frac{3 \pm \sqrt{9+4 \cdot 2}}{2 \cdot 2}=\frac{3 x^{2}-3 x-1=0}{4}
\end{array}
$$

(b) Using the second derivative test, find the local maximum and minimum values of $f . \quad f^{\prime \prime}(x)=-12 x^{2}+12 x+2$

$$
\begin{aligned}
& f^{\prime \prime}(0)=2 \longrightarrow+\operatorname{minimum} \\
& f^{\prime \prime}\left(\frac{3+\sqrt{17}}{4}\right)=-12\left(\frac{3+\sqrt{17}}{4}\right)^{2}+12\left(\frac{3+\sqrt{17}}{4}\right)+2 \approx-14.685 \quad \begin{array}{c}
\text { Sincenegative } \\
\text { maximum }
\end{array} \\
& f\left(\frac{3-\sqrt{17}}{4}\right)=-12\left(\frac{3-\sqrt{77}}{4}\right)^{2}+12\left(\frac{3-\sqrt{17}}{4}\right)+2 \approx-2.315 \quad \begin{array}{c}
\text { sincuarative } \\
\text { maximum }
\end{array}
\end{aligned}
$$

(c) Find the interval(s) where the function is concave upward and concave downward.
we need to find there $f^{\prime \prime}(x)>0$ and $f^{\prime \prime}(x)<0$. First we find the
zeros of $f^{\prime \prime}(x)$ using the quadratic formula.

$$
x=\frac{-12 \pm \sqrt{144-4(-12) 2}}{-24}=\frac{-12 \pm \sqrt{144+96}}{-24}=\frac{-12 \pm \sqrt{240}}{-24}=\frac{1}{2} \pm \frac{4 \sqrt{15}}{24}=\frac{1}{2} \pm \frac{\sqrt{15}}{6} \quad \begin{aligned}
& f^{\prime \prime}(0)=2 \\
& f^{\prime \prime}(2)=-12 \cdot 4+122+2=-22 \\
& f^{\prime \prime}(-1)=-12-12+2=-22
\end{aligned}
$$

(d) Find the inflection points). $\left\lvert\,=0.1455 \approx \frac{-1}{2} \frac{-\sqrt{16}}{6} \quad \frac{1}{2}+\frac{\sqrt{15}}{6} \approx 1.1455\right.$

The inflection points are at

$$
x=\frac{1}{2}-\frac{\sqrt{15}}{6} \text { and } x=\frac{1}{2}+\frac{\sqrt{15}}{6}
$$

So concave down $\left(-\infty, \frac{1}{2}-\frac{\sqrt{15}}{6}\right)$

$$
U\left(\frac{1}{2}+\frac{\sqrt{15}}{6}, \infty\right)
$$

concave up $\left(\frac{1}{2}-\frac{\sqrt{15}}{6}, \frac{1}{2}+\frac{\sqrt{15}}{6}\right)$
(11) The graph of the derivative f^{\prime} of a function f is shown below.

$$
x^{2}(x+3)-(x+3)
$$

$$
\left(x^{2}-1\right)(x+3)
$$

x intercepts

$$
x= \pm 1,-3
$$

y intucepts

$$
f(0)=-3
$$

(a) On what intervals is f increasing or decreasing?
fucrcases cher the derivative is positive so $(-\infty,-3) \cup$ fdereases when dencatie is negative so $(-3,-1) \quad(-1,1) \cup(4, \infty)$
(b) At what values of x does f have a local maximum or minimum?
whee the dewative $\Delta 0$

$$
x=-3,-1,1 \text {, and } 4
$$

(12) (a) Find the x and y intercepts and any asymptotes of the function $f(x)=\frac{x^{3}+3 x^{2}-x-3}{x^{2}+1}$ Dengue of numerator is one
No vertical asymptotes $x^{x^{2}+1}$ mort than degree of denvonnation
since the denominator is never 0 . So slant asymptote
(b) Is $f(x)=x^{4}-\cos (x)$ even, odd, or neither?

$$
\begin{aligned}
& \left.\frac{-\left(x^{3}+3 x^{2}-x-3\right.}{}+x\right)^{3 x^{2}-2 x-3} \\
& \frac{-3 x^{2}-3 x}{x-3}
\end{aligned}
$$

$$
\begin{aligned}
f(-x) & =(-x)^{4}-\cos (-x)=x^{4}-\cos (x) \\
-f(x) & =-x^{4}+\cos x
\end{aligned}
$$

Since $f(-x)=f(x)$, this function is even.
(13) Find the following limits.

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow \infty} \frac{3 x^{2}-x+4}{5 x-7 x^{2}} \text { Multiply top and bottom by } 1 / x^{2} \text { : } \\
& \quad=\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}-x+4\right) \cdot 1 / x^{2}}{\left(5 x-7 x^{2}\right) \cdot 1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{3-\frac{1}{x}+\frac{4}{x^{2}}}{\frac{5}{x}-7}=\frac{\lim _{x \rightarrow \infty}^{\text {qumatien }}\left(3-\frac{1}{x}-\frac{4}{x^{2}}\right)}{\substack{\text { quifferanue } \\
\text { rule }}}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}-3 x^{2}+x-1}$

Nou multiply by $\frac{1}{x^{3}}$ toget:
$\lim _{\substack{x \rightarrow \infty \\ \text { Suma } \\ \text { rule } \\ \text { diffecence }}} \frac{x^{2} \cdot \frac{1}{x^{3}}}{\left(x^{3}-3 x^{2}+x-1\right) \cdot 1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1-\frac{3}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}} \stackrel{1}{=} \frac{\lim _{x \rightarrow \infty} \frac{1}{x}}{\lim _{x \rightarrow \infty}\left(1-\frac{3}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}\right)}$

$$
\begin{aligned}
& \text { rule } \downarrow \lim _{x \rightarrow \infty} \\
& =\frac{\lim _{x \rightarrow \infty} \frac{1}{x}}{} \\
& \lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} \frac{3}{x}+\lim _{x \rightarrow \infty} \frac{1}{x^{2}}-\lim _{x \rightarrow \infty} \frac{1}{x^{3}} \overline{ } \\
& \begin{array}{l}
\text { constart } \\
\text { multiple }
\end{array} \\
& \text { mulite } \\
& \text { wistatral. }
\end{aligned}
$$

(c) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+2 x^{2}-1}{2 x^{2}-1}$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{4 x^{3}+2 x^{2}-1}{2 x^{2}-1} \\
& \text { Hre multiply by } \frac{1}{x^{2}} \\
& \lim _{x \rightarrow-\infty} \frac{4 x+2-\frac{1}{x}}{2-\frac{1}{x}}=\frac{\lim _{x \rightarrow-\infty} 4 x+2-\frac{1}{x}}{\lim _{x \rightarrow-\infty} 2-\frac{1}{x}}=\frac{\text { sumidilternce } \lim _{x \rightarrow-\infty} 4 x+\lim }{x \rightarrow-\infty} 2-\lim _{x \rightarrow-\infty} \frac{1}{x} \\
& \lim _{x \rightarrow-\infty} 2-\lim _{x \rightarrow \infty} \frac{1}{x} \\
& \lim _{x \rightarrow-\infty} 4 x+2
\end{aligned}
$$

Since the denominator approaches 2 and
the numaator grous meyativd yulthout boond, the Limit is $-\infty$

$$
\begin{aligned}
& \text { (d) } \lim _{x \rightarrow \infty} \sqrt{5 x^{4}-3 x+1}-\sqrt{5 x^{4}-2 x^{2}+x+4} \text { multiply by the conjugate }
\end{aligned}
$$

(14) A cylindrical container, open at the top and of capacity 24π cubic inches is to be manufactured. If the cost of the material used for the bottom of the container is 6 cents per square inch, and the cost of the material used for the curved part is 2 cents per square inch, find the dimension which will minimize the cost. (Hint: The bottom of the cylinder is a circle and the curved part is really a rectangle--visualize cutting open a can and unfolding the curved part -- with height h and length the circumference of the bottom.)
(1)

base
Area $=\pi r^{2}$

$A=2 \pi r \cdot h$
(2) The objective function is cost: $C=6 \cdot \pi r^{2}+2 \cdot 2 \pi r h$ see above.
(3) We know $V=24 \pi=\pi e r^{2} h$ so $h=24 / r^{2}$

We know $V=24 \pi=\pi t r^{2} h$ so $h=24 / r^{2}$
Plugging in oe get $C(r)=6+t r^{2}+4 \pi r\left(24 / r^{2}\right)=6 \pi r^{2}+\frac{96 \pi}{r} \leftarrow \operatorname{minimise}_{\text {this }}$
0 objective objective function
(4) $C^{\prime}(r)=12 \pi r-\frac{96 \pi}{r^{2}}=0$ if

$$
\begin{aligned}
12 \pi r & =\frac{96 \pi}{r^{2}} \\
12 r^{3} & =96 \\
r^{3} & =8 \text { or } r=2
\end{aligned}
$$

Conform min'. $C^{\prime \prime}(r)=12 \pi+\frac{94}{3} \frac{\pi}{r^{3}}$ so $C^{\prime \prime}(2)>0$ theremin.
(5) Ansis the question: when $r=2, h=24 / 2=6$

So dimensions are Winches high $\times 2$ inch radius
(15) A poster of area $6000 \mathrm{~cm}^{2}$ has blank margins of width 10 cm on both the top and bottom and 6 cm on each side. Find the dimensions that maximize the printed area.
(1)

(2) $A_{p}=(v-12)(h-20)$
(3) We know $A=6000=w \cdot h$ so $\omega=6000 / \mathrm{h}$
plugging in va get $A_{p}(h)=(6000 / h-12)(h-20)^{n}$

$$
A_{p}(h)=6000-\frac{120000}{h}-12 h+240
$$ maximize this objective function

(4) $A_{p}^{\prime}(h)=\frac{120000}{h^{2}}-12$. Find where this is zero.

$$
\begin{aligned}
& \frac{120000}{h^{2}}=12 \\
& h^{2}=10000
\end{aligned}
$$

Confirm maximum

$$
A_{T}^{\prime \prime}(h)=\frac{-120000.2}{h^{3}} \text { so } A_{p}^{\prime \prime}(100)<0 \text { somax. }
$$

(5) Answer the question.

When $h=100, \omega=6000 / h=6000 / 100=60$
So $100 \mathrm{~cm} \times 60 \mathrm{~cm}$

