Math 218: Combinatorics

Homework 8 : Due October 4

1. Prove that $n^{2} \geq 3 n$ for all $n \geq 3$.
2. Morris 6.2.6 \#6.
3. Let x and y be in the set $\{$ true, false $\}$ and let $x \oplus y$ denote the exclusive-or of x and y which is defined to be true if and only if exactly one of x and y is true. Note that the exclusive-or operation is associative, that is $a \oplus(b \oplus c)=(a \oplus b) \oplus c$. Prove by induction on n that $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$ is true if and only if an odd number of $x_{1}, x_{2}, \ldots, x_{n}$ are true.
4. Suppose M_{i} is an $r_{i-1} \times r_{i}$ matrix for r_{i} a positive integer and $1 \leq i \leq n$. So M_{1} has r_{0} rows and r_{1} columns while M_{2} has r_{1} rows and r_{2} columns. Prove that for all positive integers n, the matrix product $M_{1} \cdot M_{2} \cdots M_{n}$ is an $r_{0} \times r_{n}$ matrix.
5. Bogart \#73. Give a proof by induction of the binomial theorem. (Hint: Earlier in the semester, we learned some interesting relationships among the binomial coefficients.)
