Math 218: Combinatorics

Homework 8 : Due October 4

- 1. Prove that $n^2 \ge 3n$ for all $n \ge 3$.
- 2. Morris 6.2.6 #6.
- 3. Let x and y be in the set {true, false} and let $x \oplus y$ denote the exclusive-or of x and y which is defined to be true if and only if exactly one of x and y is true. Note that the exclusive-or operation is associative, that is $a \oplus (b \oplus c) = (a \oplus b) \oplus c$. Prove by induction on n that $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ is true if and only if an odd number of x_1, x_2, \ldots, x_n are true.
- 4. Suppose M_i is an $r_{i-1} \times r_i$ matrix for r_i a positive integer and $1 \le i \le n$. So M_1 has r_0 rows and r_1 columns while M_2 has r_1 rows and r_2 columns. Prove that for all positive integers n, the matrix product $M_1 \cdot M_2 \cdots M_n$ is an $r_0 \times r_n$ matrix.
- 5. Bogart #73. Give a proof by induction of the binomial theorem. (Hint: Earlier in the semester, we learned some interesting relationships among the binomial coefficients.)