Math 218: Combinatorics

Homework 5 : Due September 20

1. (a) Suppose L is the list of elements $[a, b, b, c, c]$. In class we discussed how to count all possible permutations of this list. Now suppose we want to choose 4 elements from L and that the order they are chosen matters. How many ways can you do this for the particular list L ?
(b) Generalize your argument to create an algorithm to choose $n-1$ objects in a list L with a_{1} of the element x_{1}, a_{2} of the element x_{2}, a_{3} of the element x_{3} and so on up to a_{k} of the element x_{k}, when order matters.
2. How many integer solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=40
$$

if we also need to assume $x_{1} \geq 2, x_{2} \geq 0, x_{3} \geq-5$, and $x_{4} \geq 8$? (Hint: Can you do a change of variables that makes this like a problem we already know how to solve?)
3. Show that if $n+1$ integers are chosen from the set $\{1,2, \ldots, 2 n\}$ then there are always two which differ by 1 .
4. Prove that if the average of n non-negative integers $m_{1}, m_{2}, \ldots, m_{n}$ is greater than $r-1$, then at least one of the integers is greater than or equal to r.

