Math 218: Combinatorics Homework LAST!!!!: Due December 10 *

- 1. Prove that any tree of order n contains a subtree (a subgraph which is also a tree) of order m for every $m \leq n$.
- 2. Let G be connected and let e be an edge of G. Prove that e is a bridge if and only if it is in every spanning tree of G.
- 3. Let e be an edge of K_n . Use Cayley's Theorem to prove that the graph with vertex set [n] and edge set that of K_n minus e has $(n-2)n^{n-3}$ spanning trees.
- 4. Count the number of trees with vertex set [11] where all of the following hold (and, of course, explain your answer!):
 - (a) deg (5) = 4
 - (b) deg (1) = deg (7) = 3
 - (c) deg (4) = deg (8) = 2
 - (d) all the other vertices are leaves.

^{*}Really due by 8 AM December 11 $\,$