Math 218: Combinatorics

Homework LAST!!!!: Due December 10 *

1. Prove that any tree of order n contains a subtree (a subgraph which is also a tree) of order m for every $m \leq n$.
2. Let G be connected and let e be an edge of G. Prove that e is a bridge if and only if it is in every spanning tree of G.
3. Let e be an edge of K_{n}. Use Cayley's Theorem to prove that the graph with vertex set $[n]$ and edge set that of K_{n} minus e has $(n-2) n^{n-3}$ spanning trees.
4. Count the number of trees with vertex set [11] where all of the following hold (and, of course, explain your answer!):
(a) $\operatorname{deg}(5)=4$
(b) $\operatorname{deg}(1)=\operatorname{deg}(7)=3$
(c) $\operatorname{deg}(4)=\operatorname{deg}(8)=2$
(d) all the other vertices are leaves.
[^0]
[^0]: *Really due by 8 AM December 11

