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ABSTRACT. Goresky and Klapper conjectured that for any prime p > 13 and
any f-sequence a based on p, every pair of allowable decimations of a is cycli-
cally distinct. The conjecture is essentially equivalent to the statement that
the mapping © — Az, with (d,p—1) =1, pt A, is a permutation of the even
residues (mod p) if and only if d = 1 and A = 1 (mod p), for p > 13. We
prove the conjecture for p > 2.26 - 10%%, and establish it in a number of other
special cases such as when 0 < d < .000823p or 0 > d > —.000274p.

1. INTRODUCTION

Let p be an odd prime, Z, = Z/(p), A, d integers with (d,p—1)=1,pt A and
let E, O be the set of even and odd residues (mod p),

E=1{24608,...,p—1}CZ, O={1,3,57,...,p—2}C7Z,.

Let AE? = {Az? : x € E} C Z,. Since (d,p — 1) = 1 the mapping * — Az?
permutes the elements of Z,. Our interest is in determining when this mapping
is a permutation of the elements of E, that is, AE? N Q is empty. It is trivially a
permutation when A = 1 and d = 1. It is also known to be a permutation in the
following cases

(p,A,d) = (5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9) and (13,1,5).
Clearly, we may assume |A| < p/2 and |d| < p/2.

GK-Conjecture (Generalized Goresky-Klapper conjecture [6]) With the excep-
tion of the six cases listed above, if (d,p —1) =1, 0 < |A| < p/2, |d| < p/2 and
(A,d) # (1,1) then AE? N Q is nonempty.

This conjecture is motivated by an (essentially) equivalent conjecture concerning
binary ¢-sequences based on p, sequences a = {a;}; of zeros and ones with a; =
(27 mod p) (mod 2), (the parity of the least positive residue of 27¢ (mod p)), or
some shift a; = {a;4+}; of a. These sequences are strictly periodic with period p—1
when 2 is a primitive root.

If a is an /-sequence based on p then an allowable decimation of a is a sequence of
the type x = a9 where x; = ag4.;, and (d,p— 1) = 1. Two periodic binary sequences
a and b with the same period T are cyclically distinct if a; # b for all shifts ay,
0 <t < T. The following conjecture implies that ¢-sequences produce large families
of cyclically distinct sequences with ideal arithmetic cross-correlation.
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Original GK-Conjecture. (Goresky and Klapper [6]) If p > 13 is a prime,
2 a primitive root modulo p, and a an f-sequence based on p, then every pair of
allowable decimations of a is cyclically distinct.

To see how this conjecture is related to the first one, notice that the sequence
a is a cyclic permutation of ad if and only if there is some A € Z, such that
(A27 mod p) = (27" mod p) (mod 2) for all 4. If 2 is a primitive root then 27
runs through all nonzero residues (mod p) and so the previous congruence is true
if and only if (Az? mod p) = (r mod p) (mod 2) for every z, that is, AE? = E.

The assumption that 2 is a primitive root modulo p is essential for the connection
with f-sequences but we believe this assumption to be unnecessary for the validity
of the first conjecture.

The conjecture is elementary when d = 1; see the remark at the end of section
four. Klapper, using a computer, has verified the generalized conjecture for all
primes less than two million. Goresky, Klapper and Murty [7] proved the conjecture
for d = —1 and for the case where p = 1 (mod 4) and d = (p 4+ 1)/2. Goresky,
Klapper, Murty and Shparlinski [8, Theorem 2.2] sharpening the work of [7], proved
it for all values of d with
®*—1)* (v

2247 2257
They also gave an upper bound on the number of possible counterexamples to the
conjecture for a given p. The main result of this paper is to establish that the
conjecture is valid for all sufficiently large p.

To state our first theorem let

(2) M =#{(x1,29,23,24) € (Z;‘,)4 cxy + xo = a3 + 1q, 28+ 28 = 23 + 27}
Using the method of finite Fourier series and exponential sums we prove
Theorem 1. If M < .000823p3, then the GK-conjecture holds true.

It is elementary (see [5, Lemma 3.2]) that M < d(p — 1)? for d > 0 and that
M < 3|d|(p —1)? for d < 0 and thus we have the following improvement of (1).

Corollary 1. If 0 < d < .000823p or 0 > d > —.000274p then the GK-conjecture
holds true.

2 1)

(1) 0<d< ~596-10"%p, or 0>d>— ~ —2.98- 10 %p.

Unfortunately, the upper bound on M in Theorem 1 fails if the quantity
d1 = (d— 1,p— 1)
is large, as shown in [4]. For small d; we are able to establish the upper bound on

M for p sufficiently large.

Theorem 2. For any integer d with (d,p — 1) = 1, d; < .18(p — 1)'%/23, we have
M < 13658p%6/23,

In section four, we use a different method involving multiplicative characters to
handle the case of large d;. As it turns out, we are able to prove the Goresky-
Klapper conjecture for d; sufficiently large.

Theorem 3. a) If di > 8(%logp + 1)%/p, then the GK-conjecture holds true.

b) If p>2.1-107 and d; > 10/p then the GK-conjecture holds true.

It is a simple matter to deduce from Theorems 1, 2 and 3 that the Goresky-
Klapper conjecture is true for p sufficiently large.
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Theorem 4. For any prime p > 2.26 - 10°° the GK-conjecture holds true.

A result analogous to Theorem 1 can be stated with M replaced by a binomial
exponential sum bound. Let e,(-) denote the additive character on Z,, ey(z) =
e2mx/P and set

(3) O,y = maé 0

E ep( ux—l—vx

where u, v run through Z,.
Theorem 5. If &, < 2= then the GK-conjecture holds true.

There are several available estimates for ®4, such as the Weil bound (94 <
(d —1),/p) or the Mordell bound (®4 < p'/4M1/4) but they lead to weaker results
than those above. The first author recently established a new type of bound for a
general exponential sum [1, Theorem 1]. For the binomial of interest here (where
(d,p—1) = 1) it states that given € > 0 there is a § > 0 such that if d; < p'~¢ then

(4) P, < plia.

The proof of (4) uses additive combinatorics and harmonic analysis, and appeals
to the Balog-Szemeredi-Gowers theorem; see [9]. It may not be easy to make the
result numeric.

Finally, we note that Hong Xu and Wen-Feng Qi [11] have proven the Goresky-
Klapper conjecture for the case of odd prime powers p¢ with e > 2, p® # 9.

2. PROOF OF THEOREM 1

We use the method of finite Fourier series. A summary of basic facts we call upon
is provided in section seven. To show there exists an = € E such that Az? € O, we
must show there exists a solution (z,y) to the equation A(2z)? = 2y — 1, over Z,,
with (z,y) € Iy x Iy where

1
11:{0,1,27...,1’2}cz,,7 L=I,— {0} C Z,
Put

I1={0,1,2,3,...,[(p—1)/4]} C Zy, J=1{1,2,3,...,[(p+1)/4]} C Z,,

and let x7, xs be the characteristic functions of I, J with Fourier expansions
Zal u)ep(ux) Za] v)ep(ve)

Let a be the convolution

oz, y) = x1*x1(z) - x1*xs(Y),
with Fourier expansion a(z,y) = 3_,, , a(u,v)ey(uz + vy), where
(5) a(u,v) = p*ar(u)’ar(v)as(v).
In particular,
1P
6 0,0
(6) @(0,0) = =5
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Since I + 1 C Iy and I + J C I, « is supported on I; X I3 and so it suffices to
show that > 4(9,)a—0,_1 @(z,y) > 0. We have

Z a(z,y) = Z Z u, v)ep(ux + vy)

A(2z)?=2y—1 A(2z)?=2y—1 WY
z#0 #0
p—1
=a(0,0)(p—1) + Z a(u,v)e, (27 ) Z ep (uz + v(A27 " 12%))
(1,0)£(0,0) =1

= Main + Error,
say. Now, by (6),

(7) Main = a(0,0)(p—1) = d

To estimate the error term we break it up as
Error = F1 + Es + Ej,

where E7 is he sum over u = 0, v # 0, F5 the sum over v # 0, v = 0 and F3 the
sum over u # 0, v # 0. For E; and Es the sum over x is -1 since (d,p — 1) = 1.
Thus

(8)

I12 |1]1Y/2] J|1/2 715/2] J|1/2
‘E1|<Z|a0’l}|fp Z|a] “al (v)|§p2u“ | | :|| | |

p? p P ’

by the Cauchy—Schwarz 1nequahty and Parseval’s identity, and
I1%1J
© 2 < 37 a0 = 3 s 0 O (0] = P

For E3 we use a variant from the argument of Konyagin and Shparlinski [10,
Section 7]. By invariance under the group action we have

(10)
1Bl < 305 Ja(w, o) |3 epuz + 0420 10t)| = 3° 37 g, o) |3 ey + o'a)|
u#0 v#£0 z#0 u/#0 v'#0 z#0
where
(11) B v = —— Z la(zu’, A1z®’)],
uL7EO
and A;A2%71 =1 (mod p). Next, from Hélder’s inequality
ot } :
Bl = | 22 |2 eplela +0/at) DD B |30 > B
u v u’#0 v’ #0 u’#0 v/ #0
(12)
_ E1/4 ;/QEéM,
say.
Clearly,

(13) E4 :]92]\47
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with M as in (2). Next,

:ZZﬁ(uﬂvl)fiZZZqu Azt \—ZZMUU

u/#0 v’ #0 z#0 u' #0 v’ #0 u#0 v#£0
D lar@) | | D lar(v)llas(v
u#0 v#£0
1 1
2 2
D lar@) | [ D lar(w)® Y las@)* |
u#0 v#£0 v#£0

and so by Parseval’s identity
(14) Es < p~2(p — )21 (p — |21 1V2 < p72 (0 — 1)1
Finally, for Eg we have

Bo= 3 3 ) = A SN S S et Ao )

u/#0 v’ #0 x7#0 y#0 u/#0 v/ #0

_ 1 Z la(u1, v1)|la(ug, v2)]

1<uy,uz,v1,v2<p
(v1/v2)=(u1/uz)?  (mod p)

1 . .
] Z la(uy, juf)||a(ug, jus)|
p 1<uy,u2,j<p
4
p . . . .
=1 Z lar(u1)Plar (u2) P |lazr (Guf)as (Guf)|lar (jus)as (jus)]
p 1<uy,u2,j<p
2
Z laz (uf? Z lar(j)as(5)?
u0 770
=T|I| —1I)* 1> lar(ias (i

J#0

To evaluate the latter sum we apply Parseval’s identity to a(x) = x1* X to obtain,

> lar(i)as(j Z|a1 a;(7)* —lar(0)as(0)?
J#0
_ 2 2| 72
ﬁzzja (@) = PP
If p=1 (mod 4) then |I| = 252 |J| = 271 and

S0t =272 (= D/ = L2 np+s),

96
g 17 _ ptl
while if p = 3 (mod 4) then |I| = |J| = &= and

i p—3)(p2—1)—|—(p 'f61)2.

2oat(@) =2 (1042 4 (0= /4 T4/ = g
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Thus
(15)
5 12 2 12 27 e
S st = { T B e g ). =1 (e,
I J = )
40 3,528 1+%+%+%7%), ifp=3 (mod 4).

Let 7, denote the value on the right-hand side of (15) and note that for p > 106,
Yp < .0065105. Then

p 2 2
16 FEg < I — 1=
(16) o < I~ 1)

By (12), (13), (14) and (16) we have

(17) | Bs] < 7/ 20 — 111)°2,

M1/4
-7
and then by (8) and (9),

LRSS P s M

p p PopPp-1)
If p=3 (mod 4), so that |I| = |[J| = 2£L, then

(18) |Error| <

Al — 1)

1 (p+1)° 7;/4 M4 3/2 3/2
|Error| < 2 + o pl/z(p_1)1/4(p+ 1)*%(8p—1)

while

1L (+)ip-1)

If p > 105 and M < .000823p> one can check with a calculator that |Error| <
Main. A similar calculation can be made for the case p =1 (mod 4).

3. PROOF OF THEOREM 2

For any integers k,l let M (k,l) denote the number of solutions in (Z;)4 of the
system

m]f + xlg = x§ + a:fj
Ill —I—xlz :xé%—xi.
We have the elementary bounds ([5, Lemma 3.2])
Ellp—1)%2, forl1<l<k -1
(19) Mk 1) < (p ),2 or1<l<k<p-1,
3klif(p—1)?, forl<0,|l| <k, k+]|l]|<p—1
Also, since 2P~ = 1 (mod p) for 2 € Z, we have M(k,1) = M(k',l") for (k,1) =
(k',') (mod p —1).
Lemma 1. For any integers k,l,m we have M (k,l) < M(mk, ml).

Proof. For any nonzero Ay, Ay, Az, A4, By, B2, B3, By € Zy, let
M(k,l, A1, Aa, As, A4, By, Bo, B3, By) be the number of solutions in (Z;)‘1 of the
system

Ayxh 4 Agak = Ak + Ayak
Bzl 4 Byzb = ngg + Bya!,.
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We first note that for any choice of A4;, B,
M(k,l, A1, Aa, As, Ay, By, B2, Bs, By) < M(k,1).
Indeed, p? M (k,1, Ay, Ag, A3, Ay, By, B, B3, By) is just

Z e Z Z ep(a(Arzy + Agxh — Agah — Ayaxk) + B(Biah + Borhy — Bsxl — By))
170 2470 .,

2 4
< ZH Z ep(adizt 4+ BB;xt) H Z ep(—a Azl — BB;at)

a,B i=1 |x;7#0 =3 |x;7#0

4\ 174 4\ 1/4

2 4
< H Z Z ep(ad;zh + BB;at) H Z Z ep(—ad;zh — Bt

i=1 \ «o,8 |z;#0 =3 \ «a,8 |z;7#0
= p>M(k,1).

Next, set m; = (m,p — 1) and let {wy, ..., wpm, } be a set of representatives for
Zy/(Zy)™. Then decomposing Zs as a union over the different cosets of Zy™, we
see that

1 mq miq maq ma
_ k ok ok ok o0l 01 1 1
M(k,l)fm4 E E E E M(mk,ml,wil,wh,wi3,wi4,wi1,wi2,wi3,wu)
1.

11:1 i2:1 ’i3:1 ’i4:1

mi mi  mi M

< mi% SO M(mk,ml) = M(mk,ml).

i1=113=143=1144=1

Lemma 2. Ifk#1 (mod p— 1) and either k orl is coprime to p — 1 then
M(k,1) < p°.

Proof. Suppose without loss of generality that (I,p — 1) = 1. Let m satisfy ml =1
(mod p — 1) and put d = km (mod p — 1) with 1 < d < p. Then M(k,I)

M (km,lm) = M(d,1) < dp* < p>. O
Let
(20) M =(k), A=kp-1), =1, 1_-=2I,
(k—=1) (k+1)
21 = _ =
( ) 5+ )\1 ) o )\1 3
and

Mo(k0) = M(k,1) forl<i<k<p—1,
M_(k,1)=M(k,=l) for1<i<k, I+k<p-—1

The next lemma is essentially Corollary 3.1 of [4] with the implied constants made
explicit.

Wi
o=

Lemma 3. For 1 <[l <k<p-—1 then fork < 3%(1)71) A li,
My (k1) S X(p—1)* +2k°Le(p— 1) + (p — 1)°n

where .
1= max{768 - 52/3klL6.7 A\/A1, B5TILA}.
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Proof. We follow the proof of Corollary 3.1 of [4]. From (2.1) of [4] it suffices to
show that A vazl C%(u;) < (p—1)u. Let T be as defined in [4, (3.1)]. If T = 0 then
as shown at the end of the proof of [4, Lemma 3.1], we must have (kl+/\) > 302

and thus from the definition of T, 6+ < 2% (kly+/A\)2/(p — 1)2. We can then use
the trivial bounds

Cie(u;) < minfp — 1 k. /M} < (Kl /M) (p = D)%,
and ZZ]\; Ci(u;) <p—1, to get

=1 =1
5 d u
< \(kl s(p—1)5 < —(p—1).
<Akl /M)e(p—1)5 < . oo(p )
Suppose now that T' > 0. Set
L={5"32"T(p—1) (ﬁ
- Py |

When L < T we have by Lemma 3.1 and (3.2) of [4]
> C(w) < 23 (p — 1)kt /a0) /P00y
i<L i<L
< 252/5(p _ 1)4/5(kli/)\l)6/55;2/55L1/5
< 29523 (kly /2)05 P (p - 1),
and
S CR(w) < 2/5(p — 1) (kin/ )00 L+ 1) Y Cu(uy)
L<i<N L<i<N
< 229 (p — 1)%/5 (kly /0)* 25, P (L + 1) (p - 1)
< 285%/3 (kly /M0)05 2 (p — 1),
givinglx\zij\il C2(w;) < 768 - 52/3(\/A)klw6z"(p — 1). Plainly 5-3/32-7(p —

1)(,“%%)\1) is less than 277 (p — 1)% and less than 279/2(p — 1)%
when (kly/M\) > 5_2/32_3/551/3. Thus L < T (we assume T > 1 else the claim is
trivial) unless (klL/A) < 5’2/32*3/551/3 < 6% in which case
Z C2(w;) < 252/5(1) _ 1)4/5(k;li/)\1)6/55;2/55T1/5
i<T
<292 5(p — 1) (kly/A)261"
<2856, (p - 1)

and
> Ch(w) <26 Y Cafwy) <2764 (p— 1),
T<i<N T<i<N
giving AY", v CF(u;) < (24375 + 257/%)5. Mp — 1) < 55762 A(p — 1), 0

Theorem 2 is just a special case of the following theorem with k =d, [ = 1.
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Theorem 6. Let 1 <1 < k < p—1 be positive integers with (kl,p—1) =1, and
for M_(k,1), k+1l<p—1. Letd* = (kFl,p—1), — for My(k,1), + for M_(k,1).
If d* < 18(p — 1)'%/23 then

M (k1) < 13658p%0/23,

Proof. Let k,l be integers with I < k < p—1 and (kl,p— 1) = 1. By Lemma 2
the bound on My (k,1) is trivial if p? < 13658p%%/2% and so we may assume that
p > 103!, The idea is to make a transformation of the type & — 2™ so that Lemma
3 can be effectively applied. Choose m so that

(22) mk=a mod (p—1), £ml=0 mod (p—1),
(plus sign for S; and minus for S_) with

1 1
(23) 0<a<=-(p—1)%, |B|<clp—1)%, c=200/235"2/28_53029..,
c
(o, B) # (0,0). Such a pair («a, 3) exists since the set of all («, ) satisfying (22)
is a lattice of volume p — 1. Now, (p — 1) { m (since («, 5) # (0,0)) and so, since
(lk,p—1) =1 we have a # 0 and 8 # 0. If @ = 3 then p — 1|m(k F 1), pd_*l m and
|8 > (p—1)/d* contradicting our assumption on the size of d*. Thus a # 3. Set

218 ifp<o.

Case i: Suppose that o < 100|8|. Then by Lemma 1 and (19) we have,
My (k1) < M(a, B) < 3a|B|p* < 300|8|*p? < 8437p50/%3.
Case ii: Suppose that o > 100|3| and a > 27°(p — 1)2/3/\}/6(6’)1/6. Then
(B0 < (32/c)p 9, B < (32/c)p*?3. By Lemma 1 and (19) we get

3

2
My(k,1) < M(a, §) < Saflp? < >p'®/% <3

c

6
<o ) PY/23p? < 1365859/23

Case iii: Suppose that a > 100|3| and that a < 275(p — 1)2/3)\1/6(6')1/6, S0

that Lemma 3 applies. In particular, since 6+ = |a — 8|/A; we have
.99)\31 <4, < % /\% <5< 1.01)\21

and 6’5;1/3 < 2|[3|a’1/3)\}/3. The value g in Lemma 3 is bounded by
max{768 - 52/3(A/A1)a2|Bla~ 13X 1/3 557(1.01a)} < max{1536 - 5*/3a?/3|8|*/3 563a}

<max{1536 - 52/3¢?/3(p — 1)29/%3 563¢(p — 1)16/23}

< max{13657.9(p — 1)2%/% 107(p — 1)*9/2%} = 13657.9(p — 1)2°/23,
Thus we get
My (k,1) < M(a, 5) < (ep"/%)?p? + 4(1/c)p™*p + 13657.9pp*"/*3
< 29p%0%/23 1 76p52/23 4 13657.9p%%/2% < 1365850723,
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4. PROOF OF THEOREM 3

Let A, d be integers such that 0 < |A| < p/2, |d| < p/2, (A,d) # (1,1). Put
d = ((p—-1,d—1) and k = (p — 1)/d;. Let B be chosen so that p { B and
AB4=1 #£1 (mod p) ; such a B exists since either d =1, A # 1, or d # 1 and B4~}
takes on at least two distinct nonzero values (mod p). Put C = ABY! (mod p)
with —p/2 < C < p/2, C # 0,1. Suppose that we can find an element of the form
Bz € E such that BOzF € Q. Then A(Bz*)4 = BCzF € Q, that is, AE? N O is
nonempty. Let x = Bz* (mod p), y = BOz* (mod p). We count the number N of
solutions of the congruence y = Cx (mod p) such that x € E, B~z is a k-th power,
and y € O. Then letting Zwk‘:wo denote a sum over all multiplicative characters

Y (mod p) satisfying ¢* = 1)y, where ) is the principal character, we have

en  N=13 2 ) | xs(aolCa)

€T

(25) kaE )xo(Cz) + Z > (B~ a)xe(x)xo(Cx)
1!’7'51/)0 z
(26) = Main + Error.

Main Term: Suppose first that 1 < C' < p/2. The main term is just the number
of values of n € {1,2,..., pz;l} such that (25 — 1)p < 2nC' < 2jp for some j, that is

(2 = Dp jp
20 ~"T¢
with 1 < j < [C/2]. Thus, using [z] — [ — y] > [y], we have
/2] . . (C/2]
1 jp (2 =Dp] 1 p1_1[C]rp
= - —— — —_— > — _— = = | — —_— .
(20 Main = ¢ ; [C] [ 20 |k ; [20} k|2 [20}

We consider first a few small values of C. Let S denote the sum appeamng in the
main term, S = k(Main). If C' = 2 then S = [p/2] — [p/4] > 2=. If C = 3 then

S = [p/3] = [p/6] = B5*. For C = 4 we have S = ([p/4] - [p/8]) + ([p/2} —[3p/8]) =

p—3

For & < C < & we have

[C/2)[p/2C] = [C/2] =

For 5 < C < p/4 we have

The quantity being subtracted takes on its maximum value when C' = %1 and so
we obtain

2| L2C
Thus in all cases S > (p — 3)/8.

[C}{p}zp—l 2 p—3
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Next assume that —p/2 < C < —1. Then 2nC € O if and only if —2nC

is even and so we replace C' with —C and count the number of values n with
2jp < 2nC < (2§ + 1)p for some j with 0 < j < [(C —1)/2]. Then,

522 [2)= (22 2]

and the lower bound follows as before. Thus we have uniformly,

[(C-1)/2]

=0

p—3
2 Main > ——.
(28) ain 3
Error Term: Let ¢ be a nonprincipal character (mod p). Then
ZUJ (z)xo(Cx) Z ZGE ep(yl’))(z ao(z)ep(2Cx)) (B~ x)

—ZZaE Gy+Cz B,

where G(y+Cz, B™') is the Gauss sum G(y+Cz,B™1) = 3" e, ((y+Cz)z)y (B ),
of modulus /p, unless y + Cz = 0 in which case it vanishes. Thus we obtain from
(32)

|Zw >X@<0x|<f2|aE |Z\a@ |<—logp+1>f

and
4
|Error| < (1 —1/k)(— logp + 1)2/p.
T

We conclude from (14) and (28) that N is positive provided that 2 73 > (k —
1)(&logp+1)2/p. If di > 1 then k < B and 222 > 24 = 4. Thus N is
positive provided that d; > 8(;" logp + 1)2 V/D-
To prove part (b) of the theorem suppose that p > 2.1-107 and d; > 10/p. In
[4, Proposition 1.1] we proved
P32
| Zep(axd +bx)| <dy + —,
x#0 h

for any nonzero a,b. Thus Theorem 5 can be applied if d; + % < %7. Otherwise,
either

1(p—7 \/(p—7)2 1(p—7 \/(19—7)2
Z — — 4p3/2 Z —4p3/2 ) .
d1<2<9 81 P or di>o | Ty Y T p

The first inequality fails for d; > 10,/p and p > 811000. Thus the second inequality
holds true. But for p > 2.007 - 107, it implies that dy > 8(-% log(p) + 1)?\/p. Thus
part (a) of the theorem applies.

Remark: When d = 1 there is no error term in the above calculation and we
obtain that |[AE N Q| > 22. Thus AE N O is nonempty for any odd prime p and
A#£1.
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5. PROOF OF THEOREM 4

If di < .18(p — 1)'%/23 then by Theorem 2, M < 13658p%%/23 < .000823p>
for p > 2.26 - 10°°. The result then follows from Theorem 1. Otherwise d; >
18(p — 1)16/23 > 10,/p for p > 8.3 - 108, and so Theorem 3 (b) yields the result.

6. PROOF OF THEOREM 5

The proof proceeds identically as the proof of Theorem 1 the only change being
in the estimate of F3. We have

|E5) < Z Z la(u,v)] Z ep(ux +vA297 129 < @, Z Z la(u,v)]

u#0 v#0 z#0 u#0 v#0

< p*q (Z Jar(u)|* - a1(0)|2> (Z lar(v)as(v)] - az(U)aJ(0)|>

_ e (P [ZM2L 2
R TS p p?

113]7)  |1)%]J]
+ +
p p

and so
(29)

|Error| < |Ey|+| Ba|+|Es| < p=2®g| 12| J|2 (p— 1)) (p—| T 2| J|?).

The main term is again Main = ”;—QIU [2|J|. With a calculator one can then check

that |Error| < Main provided that &4 < % and p > 2 - 106.
7. FINITE FOURIER SERIES

Let p be an odd prime, e,(-) = €2™/P and > = Y"P_,. Any complex valued
function o defined on Z, has a Fourier expansion
a(z) = a(y)ey(xy),
y

where the coefficients a(y) are given by
(30) aly) = - Z a(x)ey(—xy).

Let
I={a+1,06+2,...,a+M}CZ,

be an interval in Z, with M < p, and x; be the characteristic function of I with
Fourier expansion x(z) = 2, ar(y)e,(yz). Then

0@ =0/p. arl) =7, (o Y - ) BEE g,

2 sin(my/p)
and
B 1 sin(mMy/p)
(31) Sl = st = 5 PP I
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where the summand is understood to be M when y = 0. In [2] the first author
proved
4
f(M,p) < —5 logp +1.

The main term in this upper bound cannot be improved. Indeed, in [3, Equation
5] Cochrane and Peral showed

F(M.p) = 5 logp +O(1)

Letting I = {1,2,..., prl} we see that yz(z) = x7(27'2) and so ag(y) = ar(2y)
and Zy lag(y)| = Zy lar(y)|. Thus,

4
(32) ; jag(y)| < —5 logp + 1.

The same holds for 3 |ao(y)|.
Let

I:{a1—|—1,a1+2,...,a1—|—M}, Jz{b1+17b1—|—N},

be intervals of integers in Z, with |I| = M, |J| = N and 1 < M, N < p, and let x7,
X have Fourier expansions

xr(@) =Y ar@ey(zy), xs(z) = as(y)ep(zy).

The convolution xr * x s, defined by x; * xs(x) = >, xr(u)xs(z — u), has Fourier
coefficients pas(y)a;(y).

Parseval’s identity states that if « is any complex valued function on Z, with
expansion a(z) = > a(y)ep(zy) then

pY_la@)P =" la@)P.
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