DECIMATIONS OF L-SEQUENCES AND PERMUTATIONS OF EVEN RESIDUES MOD P

JEAN BOURGAIN, TODD COCHRANE, JENNIFER PAULHUS, AND CHRISTOPHER PINNER

Abstract

Goresky and Klapper conjectured that for any prime $p>13$ and any ℓ-sequence a based on p, every pair of allowable decimations of \mathbf{a} is cyclically distinct. The conjecture is essentially equivalent to the statement that the mapping $x \rightarrow A x^{d}$, with $(d, p-1)=1, p \nmid A$, is a permutation of the even residues $(\bmod p)$ if and only if $d=1$ and $A \equiv 1(\bmod p)$, for $p>13$. We prove the conjecture for $p>2.26 \cdot 10^{55}$, and establish it in a number of other special cases such as when $0<d<.000823 p$ or $0>d>-.000274 p$.

1. Introduction

Let p be an odd prime, $\mathbb{Z}_{p}=\mathbb{Z} /(p), A, d$ integers with $(d, p-1)=1, p \nmid A$ and let \mathbb{E}, \mathbb{O} be the set of even and odd residues $(\bmod p)$,

$$
\mathbb{E}=\{2,4,6,8, \ldots, p-1\} \subset \mathbb{Z}_{p}, \quad \mathbb{O}=\{1,3,5,7, \ldots, p-2\} \subset \mathbb{Z}_{p}
$$

Let $A \mathbb{E}^{d}=\left\{A x^{d}: x \in \mathbb{E}\right\} \subset \mathbb{Z}_{p}$. Since $(d, p-1)=1$ the mapping $x \rightarrow A x^{d}$ permutes the elements of \mathbb{Z}_{p}. Our interest is in determining when this mapping is a permutation of the elements of \mathbb{E}, that is, $A \mathbb{E}^{d} \cap \mathbb{O}$ is empty. It is trivially a permutation when $A=1$ and $d=1$. It is also known to be a permutation in the following cases

$$
(p, A, d)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9) \text { and }(13,1,5)
$$

Clearly, we may assume $|A|<p / 2$ and $|d|<p / 2$.
GK-Conjecture (Generalized Goresky-Klapper conjecture [6]) With the exception of the six cases listed above, if $(d, p-1)=1,0<|A|<p / 2,|d|<p / 2$ and $(A, d) \neq(1,1)$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

This conjecture is motivated by an (essentially) equivalent conjecture concerning binary ℓ-sequences based on p, sequences $\mathbf{a}=\left\{a_{i}\right\}_{i}$ of zeros and ones with $a_{i} \equiv$ $\left(2^{-i} \bmod p\right)(\bmod 2)$, (the parity of the least positive residue of $\left.2^{-i}(\bmod p)\right)$, or some shift $\mathbf{a}_{t}=\left\{a_{i+t}\right\}_{i}$ of \mathbf{a}. These sequences are strictly periodic with period $p-1$ when 2 is a primitive root.

If \mathbf{a} is an ℓ-sequence based on p then an allowable decimation of \mathbf{a} is a sequence of the type $\mathbf{x}=\mathbf{a}^{\mathbf{d}}$ where $x_{i}=a_{d \cdot i}$, and $(d, p-1)=1$. Two periodic binary sequences \mathbf{a} and \mathbf{b} with the same period T are cyclically distinct if $\mathbf{a}_{t} \neq \mathbf{b}$ for all shifts \mathbf{a}_{t}, $0<t<T$. The following conjecture implies that ℓ-sequences produce large families of cyclically distinct sequences with ideal arithmetic cross-correlation.

[^0]Original GK-Conjecture. (Goresky and Klapper [6]) If $p>13$ is a prime, 2 a primitive root modulo p, and a an ℓ-sequence based on p, then every pair of allowable decimations of \mathbf{a} is cyclically distinct.

To see how this conjecture is related to the first one, notice that the sequence \mathbf{a} is a cyclic permutation of $\mathbf{a}^{\mathbf{d}}$ if and only if there is some $A \in \mathbb{Z}_{p}^{*}$ such that $\left(A 2^{-i d} \bmod p\right) \equiv\left(2^{-i} \bmod p\right)(\bmod 2)$ for all i. If 2 is a primitive root then 2^{-i} runs through all nonzero residues $(\bmod p)$ and so the previous congruence is true if and only if $\left(A x^{d} \bmod p\right) \equiv(x \bmod p)(\bmod 2)$ for every x, that is, $A \mathbb{E}^{d}=\mathbb{E}$.

The assumption that 2 is a primitive root modulo p is essential for the connection with ℓ-sequences but we believe this assumption to be unnecessary for the validity of the first conjecture.

The conjecture is elementary when $d=1$; see the remark at the end of section four. Klapper, using a computer, has verified the generalized conjecture for all primes less than two million. Goresky, Klapper and Murty [7] proved the conjecture for $d=-1$ and for the case where $p \equiv 1(\bmod 4)$ and $d=(p+1) / 2$. Goresky, Klapper, Murty and Shparlinski [8, Theorem 2.2] sharpening the work of [7], proved it for all values of d with
(1) $0<d \leq \frac{\left(p^{2}-1\right)^{4}}{2^{24} p^{7}} \approx 5.96 \cdot 10^{-8} p, \quad$ or $\quad 0>d \geq-\frac{\left(p^{2}-1\right)^{4}}{2^{25} p^{7}} \approx-2.98 \cdot 10^{-8} p$.

They also gave an upper bound on the number of possible counterexamples to the conjecture for a given p. The main result of this paper is to establish that the conjecture is valid for all sufficiently large p.

To state our first theorem let

$$
\begin{equation*}
M=\#\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\left(\mathbb{Z}_{p}^{*}\right)^{4}: x_{1}+x_{2}=x_{3}+x_{4}, x_{1}^{d}+x_{2}^{d}=x_{3}^{d}+x_{4}^{d}\right\} \tag{2}
\end{equation*}
$$

Using the method of finite Fourier series and exponential sums we prove
Theorem 1. If $M<.000823 p^{3}$, then the GK-conjecture holds true.
It is elementary (see [5, Lemma 3.2]) that $M<d(p-1)^{2}$ for $d>0$ and that $M<3|d|(p-1)^{2}$ for $d<0$ and thus we have the following improvement of (1).
Corollary 1. If $0<d<.000823$ p or $0>d>-.000274 p$ then the $G K$-conjecture holds true.

Unfortunately, the upper bound on M in Theorem 1 fails if the quantity

$$
d_{1}:=(d-1, p-1)
$$

is large, as shown in [4]. For small d_{1} we are able to establish the upper bound on M for p sufficiently large.
Theorem 2. For any integer d with $(d, p-1)=1$, $d_{1}<.18(p-1)^{16 / 23}$, we have $M \leq 13658 p^{66 / 23}$.

In section four, we use a different method involving multiplicative characters to handle the case of large d_{1}. As it turns out, we are able to prove the GoreskyKlapper conjecture for d_{1} sufficiently large.
Theorem 3. a) If $d_{1}>8\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}$, then the GK-conjecture holds true.
b) If $p>2.1 \cdot 10^{7}$ and $d_{1}>10 \sqrt{p}$ then the GK-conjecture holds true.

It is a simple matter to deduce from Theorems 1,2 and 3 that the GoreskyKlapper conjecture is true for p sufficiently large.

Theorem 4. For any prime $p>2.26 \cdot 10^{55}$ the GK-conjecture holds true.
A result analogous to Theorem 1 can be stated with M replaced by a binomial exponential sum bound. Let $e_{p}(\cdot)$ denote the additive character on $\mathbb{Z}_{p}, e_{p}(x)=$ $e^{2 \pi i x / p}$, and set

$$
\begin{equation*}
\Phi_{d}=\max _{(u, v) \neq(0,0)}\left|\sum_{x=1}^{p-1} e_{p}\left(u x+v x^{d}\right)\right| \tag{3}
\end{equation*}
$$

where u, v run through \mathbb{Z}_{p}.
Theorem 5. If $\Phi_{d} \leq \frac{p-7}{9}$ then the GK-conjecture holds true.
There are several available estimates for Φ_{d}, such as the Weil bound ($\Phi_{d} \leq$ $(d-1) \sqrt{p})$ or the Mordell bound $\left(\Phi_{d} \leq p^{1 / 4} M^{1 / 4}\right)$ but they lead to weaker results than those above. The first author recently established a new type of bound for a general exponential sum [1, Theorem 1]. For the binomial of interest here (where $(d, p-1)=1)$ it states that given $\epsilon>0$ there is a $\delta>0$ such that if $d_{1}<p^{1-\epsilon}$ then

$$
\begin{equation*}
\Phi_{d}<p^{1-\delta} \tag{4}
\end{equation*}
$$

The proof of (4) uses additive combinatorics and harmonic analysis, and appeals to the Balog-Szemeredi-Gowers theorem; see [9]. It may not be easy to make the result numeric.

Finally, we note that Hong Xu and Wen-Feng Qi [11] have proven the GoreskyKlapper conjecture for the case of odd prime powers p^{e} with $e \geq 2, p^{e} \neq 9$.

2. Proof of Theorem 1

We use the method of finite Fourier series. A summary of basic facts we call upon is provided in section seven. To show there exists an $x \in \mathbb{E}$ such that $A x^{d} \in \mathbb{O}$, we must show there exists a solution (x, y) to the equation $A(2 x)^{d}=2 y-1$, over \mathbb{Z}_{p}, with $(x, y) \in I_{1} \times I_{2}$ where

$$
I_{1}=\left\{0,1,2, \ldots, \frac{p-1}{2}\right\} \subset \mathbb{Z}_{p}, \quad I_{2}=I_{1}-\{0\} \subset \mathbb{Z}_{p}
$$

Put

$$
I=\{0,1,2,3, \ldots,[(p-1) / 4]\} \subset \mathbb{Z}_{p}, \quad J=\{1,2,3, \ldots,[(p+1) / 4]\} \subset \mathbb{Z}_{p}
$$

and let χ_{I}, χ_{J} be the characteristic functions of I, J with Fourier expansions

$$
\chi_{I}(x)=\sum_{u} a_{I}(u) e_{p}(u x), \quad \chi_{J}(x)=\sum_{v} a_{J}(v) e_{p}(v x)
$$

Let α be the convolution

$$
\alpha(x, y)=\chi_{I} * \chi_{I}(x) \cdot \chi_{I} * \chi_{J}(y)
$$

with Fourier expansion $\alpha(x, y)=\sum_{u, v} a(u, v) e_{p}(u x+v y)$, where

$$
\begin{equation*}
a(u, v)=p^{2} a_{I}(u)^{2} a_{I}(v) a_{J}(v) \tag{5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
a(0,0)=\frac{|I|^{3}|J|}{p^{2}} \tag{6}
\end{equation*}
$$

Since $I+I \subset I_{1}$ and $I+J \subset I_{2}, \alpha$ is supported on $I_{1} \times I_{2}$ and so it suffices to show that $\sum_{A(2 x)^{d}=2 y-1} \alpha(x, y)>0$. We have

$$
\begin{aligned}
& \sum_{\substack{A(2 x)^{d}=2 y-1 \\
x \neq 0}} \alpha(x, y)=\sum_{\substack{A(2 x)^{d}=2 y-1 \\
x \neq 0}} \sum_{u, v} a(u, v) e_{p}(u x+v y) \\
& \quad=a(0,0)(p-1)+\sum_{(u, v) \neq(0,0)} a(u, v) e_{p}\left(2^{-1} v\right) \sum_{x=1}^{p-1} e_{p}\left(u x+v\left(A 2^{d-1} x^{d}\right)\right) \\
& \quad=\text { Main }+ \text { Error, }
\end{aligned}
$$

say. Now, by (6),

$$
\begin{equation*}
\text { Main }=a(0,0)(p-1)=\frac{p-1}{p^{2}}|I|^{3}|J| \tag{7}
\end{equation*}
$$

To estimate the error term we break it up as

$$
\text { Error }=E_{1}+E_{2}+E_{3}
$$

where E_{1} is he sum over $u=0, v \neq 0, E_{2}$ the sum over $u \neq 0, v=0$ and E_{3} the sum over $u \neq 0, v \neq 0$. For E_{1} and E_{2} the sum over x is -1 since $(d, p-1)=1$. Thus
$\left|E_{1}\right| \leq \sum_{v}|a(0, v)|=p^{2} \sum_{v}\left|a_{I}(0)\right|^{2}\left|a_{I}(v) a_{J}(v)\right| \leq p^{2} \frac{|I|^{2}}{p^{2}} \frac{|I|^{1 / 2}|J|^{1 / 2}}{p}=\frac{|I|^{5 / 2}|J|^{1 / 2}}{p}$,
by the Cauchy-Schwarz inequality and Parseval's identity, and

$$
\begin{equation*}
\left|E_{2}\right| \leq \sum_{u}|a(u, 0)|=p^{2} \sum_{u}\left|a_{I}(u)\right|^{2}\left|a_{I}(0) a_{J}(0)\right|=\frac{|I|^{2}|J|}{p} \tag{9}
\end{equation*}
$$

For E_{3} we use a variant from the argument of Konyagin and Shparlinski [10, Section 7]. By invariance under the group action we have

$$
\begin{equation*}
\left|E_{3}\right| \leq \sum_{u \neq 0} \sum_{v \neq 0}|a(u, v)|\left|\sum_{x \neq 0} e_{p}\left(u x+v A 2^{d-1} x^{d}\right)\right|=\sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0} \beta\left(u^{\prime}, v^{\prime}\right)\left|\sum_{x \neq 0} e_{p}\left(u^{\prime} x+v^{\prime} x^{d}\right)\right| \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta\left(u^{\prime}, v^{\prime}\right)=\frac{1}{p-1} \sum_{x \neq 0}\left|a\left(x u^{\prime}, A_{1} x^{d} v^{\prime}\right)\right| \tag{11}
\end{equation*}
$$

and $A_{1} A 2^{d-1} \equiv 1(\bmod p)$. Next, from Hölder's inequality

$$
\left|E_{3}\right| \leq\left(\sum_{u^{\prime}} \sum_{v^{\prime}}\left|\sum_{x} e_{p}\left(u^{\prime} x+v^{\prime} x^{d}\right)\right|^{4}\right)^{\frac{1}{4}}\left(\sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0} \beta\left(u^{\prime}, v^{\prime}\right)\right)^{\frac{1}{2}}\left[\sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0} \beta\left(u^{\prime}, v^{\prime}\right)^{2}\right]^{\frac{1}{4}}
$$

$$
\begin{equation*}
=E_{4}^{1 / 4} E_{5}^{1 / 2} E_{6}^{1 / 4} \tag{12}
\end{equation*}
$$

say.
Clearly,

$$
\begin{equation*}
E_{4}=p^{2} M \tag{13}
\end{equation*}
$$

with M as in (2). Next,

$$
\begin{aligned}
E_{5} & =\sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0} \beta\left(u^{\prime}, v^{\prime}\right)=\frac{1}{p-1} \sum_{x \neq 0} \sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0}\left|a\left(x u^{\prime}, A_{1} x^{d} v^{\prime}\right)\right|=\sum_{u \neq 0} \sum_{v \neq 0}|a(u, v)| \\
& =p^{2}\left(\sum_{u \neq 0}\left|a_{I}(u)\right|^{2}\right)\left(\sum_{v \neq 0}\left|a_{I}(v)\right|\left|a_{J}(v)\right|\right) \\
& \leq p^{2}\left(\sum_{u \neq 0}\left|a_{I}(u)\right|^{2}\right)\left(\sum_{v \neq 0}\left|a_{I}(v)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{v \neq 0}\left|a_{J}(v)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and so by Parseval's identity

$$
\begin{equation*}
E_{5} \leq p^{-2}(p-|I|)^{3 / 2}|I|^{3 / 2}(p-|J|)^{1 / 2}|J|^{1 / 2} \leq p^{-2}(p-|I|)^{2}|I|^{2} \tag{14}
\end{equation*}
$$

Finally, for E_{6} we have

$$
\begin{aligned}
E_{6} & =\sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0} \beta\left(u^{\prime}, v^{\prime}\right)^{2}=\frac{1}{(p-1)^{2}} \sum_{x \neq 0} \sum_{y \neq 0} \sum_{u^{\prime} \neq 0} \sum_{v^{\prime} \neq 0}\left|a\left(x u^{\prime}, A_{1} x^{d} v^{\prime}\right)\right|\left|a\left(y u^{\prime}, A_{1} y^{d} v^{\prime}\right)\right| \\
& =\frac{1}{p-1} \sum_{\substack{1 \leq u_{1}, u_{2}, v_{1}, v_{2}<p \\
\left(v_{1} / v_{2}\right) \equiv\left(u_{1} / u_{2}\right)^{d} \\
(\bmod p)}}\left|a\left(u_{1}, v_{1}\right)\right|\left|a\left(u_{2}, v_{2}\right)\right| \\
& =\frac{1}{p-1} \sum_{1 \leq u_{1}, u_{2}, j<p}\left|a\left(u_{1}, j u_{1}^{d}\right)\right|\left|a\left(u_{2}, j u_{2}^{d}\right)\right| \\
& \left.=\frac{p^{4}}{p-1} \sum_{1 \leq u_{1}, u_{2}, j<p}\left|a_{I}\left(u_{1}\right)\right|^{2}\left|a_{I}\left(u_{2}\right)\right|^{2} \| a_{I}\left(j u_{1}^{d}\right) a_{J}\left(j u_{1}^{d}\right)| | a_{I}\left(j u_{2}^{d}\right) a_{J}\left(j u_{2}^{d}\right) \right\rvert\, \\
& =\frac{p^{4}}{p-1}\left(\sum_{u \neq 0} \mid a_{I}\left(\left.u\right|^{2}\right)^{2}\left[\sum_{j \neq 0}\left|a_{I}(j) a_{J}(j)\right|^{2}\right]\right. \\
& =\frac{1}{p-1}|I|^{2}(p-|I|)^{2}\left[\sum_{j \neq 0}\left|a_{I}(j) a_{J}(j)\right|^{2}\right] .
\end{aligned}
$$

To evaluate the latter sum we apply Parseval's identity to $\alpha(x)=\chi_{I} * \chi_{J}$ to obtain,

$$
\begin{aligned}
\sum_{j \neq 0}\left|a_{I}(j) a_{J}(j)\right|^{2} & =\sum_{j}\left|a_{I}(j) a_{J}(j)\right|^{2}-\left|a_{I}(0) a_{J}(0)\right|^{2} \\
& =\frac{1}{p^{3}} \sum_{x} \alpha^{2}(x)-\frac{1}{p^{4}}|I|^{2}|J|^{2}
\end{aligned}
$$

If $p \equiv 1(\bmod 4)$ then $|I|=\frac{p+3}{4},|J|=\frac{p-1}{4}$ and

$$
\sum_{x} \alpha^{2}(x)=2\left[1^{2}+2^{2}+\cdots+((p-1) / 4)^{2}\right]=\frac{1}{96}\left(p^{2}-1\right)(p+3)
$$

while if $p \equiv 3(\bmod 4)$ then $|I|=|J|=\frac{p+1}{4}$ and

$$
\sum_{x} \alpha^{2}(x)=2\left[1^{2}+2^{2}+\cdots+((p-3) / 4)^{2}\right]+((p+1) / 4)^{2}=\frac{1}{96}(p-3)\left(p^{2}-1\right)+\frac{(p+1)^{2}}{16}
$$

Thus

$$
\sum_{j \neq 0}\left|a_{I}(j) a_{J}(j)\right|^{2}=\left\{\begin{array}{l}
\frac{5}{3 \cdot 2^{8}}\left(1+\frac{12}{5 p}-\frac{2}{5 p^{2}}+\frac{12}{5 p^{3}}-\frac{27}{5 p^{4}}\right), \quad \text { if } p \equiv 1 \quad(\bmod 4) \tag{15}\\
\frac{5}{3 \cdot 2^{8}}\left(1+\frac{12}{5 p}+\frac{14}{p^{2}}+\frac{12}{p^{3}}-\frac{3}{5 p^{4}}\right), \quad \text { if } p \equiv 3 \quad(\bmod 4)
\end{array}\right.
$$

Let γ_{p} denote the value on the right-hand side of (15) and note that for $p>10^{6}$, $\gamma_{p} \leq .0065105$. Then

$$
\begin{equation*}
E_{6} \leq \frac{\gamma_{p}}{p-1}|I|^{2}(p-|I|)^{2} \tag{16}
\end{equation*}
$$

By (12), (13), (14) and (16) we have

$$
\begin{equation*}
\left|E_{3}\right| \leq \gamma_{p}^{1 / 4} \frac{M^{1 / 4}}{p^{1 / 2}(p-1)^{1 / 4}}|I|^{3 / 2}(p-|I|)^{3 / 2} \tag{17}
\end{equation*}
$$

and then by (8) and (9),

$$
\begin{equation*}
\mid \text { Error }\left.\left|\leq \frac{|I|^{5 / 2}|J|^{1 / 2}}{p}+\frac{|I|^{2}|J|}{p}+\gamma_{p}^{1 / 4} \frac{M^{1 / 4}}{p^{1 / 2}(p-1)^{1 / 4}}\right| I\right|^{3 / 2}(p-|I|)^{3 / 2} \tag{18}
\end{equation*}
$$

If $p \equiv 3(\bmod 4)$, so that $|I|=|J|=\frac{p+1}{4}$, then

$$
\mid \text { Error } \left\lvert\, \leq \frac{1}{32} \frac{(p+1)^{3}}{p}+\frac{\gamma_{p}^{1 / 4}}{64} \frac{M^{1 / 4}}{p^{1 / 2}(p-1)^{1 / 4}}(p+1)^{3 / 2}(3 p-1)^{3 / 2}\right.
$$

while

$$
\text { Main }=\frac{1}{256} \frac{(p+1)^{4}(p-1)}{p^{2}}
$$

If $p>10^{6}$ and $M<.000823 p^{3}$ one can check with a calculator that \mid Error $\mid<$ Main. A similar calculation can be made for the case $p \equiv 1(\bmod 4)$.

3. Proof of Theorem 2

For any integers k, l let $M(k, l)$ denote the number of solutions in $\left(\mathbb{Z}_{p}^{*}\right)^{4}$ of the system

$$
\begin{aligned}
x_{1}^{k}+x_{2}^{k} & =x_{3}^{k}+x_{4}^{k} \\
x_{1}^{l}+x_{2}^{l} & =x_{3}^{l}+x_{4}^{l} .
\end{aligned}
$$

We have the elementary bounds ([5, Lemma 3.2])

$$
M(k, l) \leq\left\{\begin{array}{l}
k l(p-1)^{2}, \quad \text { for } 1 \leq l<k<p-1 \tag{19}\\
3 k|l|(p-1)^{2}, \quad \text { for } l<0,|l| \leq k, k+|l|<p-1
\end{array}\right.
$$

Also, since $x^{p-1} \equiv 1(\bmod p)$ for $x \in \mathbb{Z}_{p}^{*}$, we have $M(k, l)=M\left(k^{\prime}, l^{\prime}\right)$ for $(k, l) \equiv$ $\left(k^{\prime}, l^{\prime}\right)(\bmod p-1)$.
Lemma 1. For any integers k, l, m we have $M(k, l) \leq M(m k, m l)$.
Proof. For any nonzero $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4} \in \mathbb{Z}_{p}$ let $M\left(k, l, A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}\right)$ be the number of solutions in $\left(\mathbb{Z}_{p}^{*}\right)^{4}$ of the system

$$
\begin{aligned}
A_{1} x_{1}^{k}+A_{2} x_{2}^{k} & =A_{3} x_{3}^{k}+A_{4} x_{4}^{k} \\
B_{1} x_{1}^{l}+B_{2} x_{2}^{l} & =B_{3} x_{3}^{l}+B_{4} x_{4}^{l}
\end{aligned}
$$

We first note that for any choice of A_{i}, B_{j},

$$
M\left(k, l, A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}\right) \leq M(k, l)
$$

Indeed, $p^{2} M\left(k, l, A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2}, B_{3}, B_{4}\right)$ is just

$$
\begin{aligned}
& \sum_{x_{1} \neq 0} \cdots \sum_{x_{4} \neq 0} \sum_{\alpha, \beta} e_{p}\left(\alpha\left(A_{1} x_{1}^{k}+A_{2} x_{2}^{k}-A_{3} x_{3}^{k}-A_{4} x_{4}^{k}\right)+\beta\left(B_{1} x_{1}^{l}+B_{2} x_{2}^{l}-B_{3} x_{3}^{l}-B_{4} x_{4}^{l}\right)\right) \\
& \leq\left.\left.\sum_{\alpha, \beta} \prod_{i=1}^{2}\left|\sum_{x_{i} \neq 0} e_{p}\left(\alpha A_{i} x_{i}^{k}+\beta B_{i} x_{i}^{l}\right)\right| \prod_{i=3}^{4}\left|\sum_{x_{i} \neq 0} e_{p}\left(-\alpha A_{i} x_{i}^{k}-\beta B_{i} x_{i}^{l}\right)\right|^{1 / 4}\right|^{4}\right|^{1 / 4} \prod_{i=3}^{4}\left(\sum_{\alpha, \beta}\left|\sum_{x_{i} \neq 0} e_{p}\left(-\alpha A_{i} x_{i}^{k}-\beta B_{i} x_{i}^{l}\right)\right|^{4}\right)^{1 / 4} \\
& \leq \prod_{i=1}^{2}\left(\sum_{\alpha, \beta} \mid \sum_{x_{i} \neq 0} e_{p}\left(\alpha A_{i} x_{i}^{k}+\beta B_{i} x_{i}^{l}\right)\right. \\
& =p^{2} M(k, l) .
\end{aligned}
$$

Next, set $m_{1}=(m, p-1)$ and let $\left\{w_{1}, \ldots, w_{m_{1}}\right\}$ be a set of representatives for $\mathbb{Z}_{p}^{*} /\left(\mathbb{Z}_{p}^{*}\right)^{m}$. Then decomposing \mathbb{Z}_{p}^{*} as a union over the different cosets of $\mathbb{Z}_{p}^{* m}$, we see that

$$
\begin{aligned}
M(k, l) & =\frac{1}{m_{1}^{4}} \sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{1}} \sum_{i_{3}=1}^{m_{1}} \sum_{i_{4}=1}^{m_{1}} M\left(m k, m l, w_{i_{1}}^{k}, w_{i_{2}}^{k}, w_{i_{3}}^{k}, w_{i_{4}}^{k}, w_{i_{1}}^{l}, w_{i_{2}}^{l}, w_{i_{3}}^{l}, w_{i_{4}}^{l}\right) \\
& \leq \frac{1}{m_{1}^{4}} \sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{1}} \sum_{i_{3}=1}^{m_{1}} \sum_{i_{4}=1}^{m_{1}} M(m k, m l)=M(m k, m l)
\end{aligned}
$$

Lemma 2. If $k \not \equiv l(\bmod p-1)$ and either k or l is coprime to $p-1$ then

$$
M(k, l) \leq p^{3}
$$

Proof. Suppose without loss of generality that $(l, p-1)=1$. Let m satisfy $m l \equiv 1$ $(\bmod p-1)$ and put $d \equiv k m(\bmod p-1)$ with $1<d<p$. Then $M(k, l)=$ $M(k m, l m)=M(d, 1) \leq d p^{2} \leq p^{3}$.

Let

$$
\begin{gather*}
\lambda_{1}=(l, k), \quad \lambda=(l, k, p-1), \quad l_{+}=l, \quad l_{-}=2 l \tag{20}\\
\delta_{+}=\frac{(k-l)}{\lambda_{1}}, \quad \delta_{-}=\frac{(k+l)}{\lambda_{1}} \tag{21}
\end{gather*}
$$

and

$$
\begin{aligned}
& M_{+}(k, l)=M(k, l) \quad \text { for } 1 \leq l<k<p-1 \\
& M_{-}(k, l)=M(k,-l) \quad \text { for } 1 \leq l<k, \quad l+k<p-1
\end{aligned}
$$

The next lemma is essentially Corollary 3.1 of [4] with the implied constants made explicit.
Lemma 3. For $1 \leq l \leq k<p-1$ then for $k<\frac{1}{32}(p-1)^{\frac{2}{3}} \lambda_{1}^{\frac{1}{6}} l_{ \pm}^{\frac{1}{6}}$,

$$
M_{ \pm}(k, l) \leq \lambda^{2}(p-1)^{2}+2 k^{2} l_{ \pm}(p-1)+(p-1)^{2} \mu
$$

where

$$
\mu=\max \left\{768 \cdot 5^{2 / 3} k l_{ \pm} \delta_{ \pm}^{\frac{-1}{3}} \lambda / \lambda_{1}, 557 \delta_{ \pm} \lambda\right\}
$$

Proof. We follow the proof of Corollary 3.1 of [4]. From (2.1) of [4] it suffices to show that $\lambda \sum_{i=1}^{N} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) \leq(p-1) \mu$. Let T be as defined in [4, (3.1)]. If $T=0$ then as shown at the end of the proof of [4, Lemma 3.1], we must have $\left(k l_{ \pm} / \lambda_{1}\right) \geq \frac{1}{2} \delta_{ \pm}^{2}$ and thus from the definition of $T, \delta_{ \pm}<2^{\frac{7}{2}}\left(k l_{ \pm} / \lambda_{1}\right)^{\frac{1}{2}} /(p-1)^{\frac{1}{2}}$. We can then use the trivial bounds

$$
C_{ \pm}\left(\mathbf{u}_{i}\right) \leq \min \left\{p-1, k l_{ \pm} / \lambda_{1}\right\} \leq\left(k l_{ \pm} / \lambda_{1}\right)^{\frac{5}{6}}(p-1)^{\frac{1}{6}}
$$

and $\sum_{i=1}^{N} C_{ \pm}\left(\mathbf{u}_{i}\right) \leq p-1$, to get

$$
\begin{aligned}
\lambda \sum_{i=1}^{N} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) & \leq \lambda\left(k l_{ \pm} / \lambda_{1}\right)^{\frac{5}{6}}(p-1)^{\frac{1}{6}} \sum_{i=1}^{N} C_{ \pm}\left(\mathbf{u}_{i}\right) \\
& \leq \lambda\left(k l_{ \pm} / \lambda_{1}\right)^{\frac{5}{6}}(p-1)^{\frac{7}{6}} \leq \frac{\mu}{1000}(p-1)
\end{aligned}
$$

Suppose now that $T>0$. Set

$$
L=\left\lfloor 5^{-5 / 3} 2^{-7}(p-1) \frac{\delta_{ \pm}^{\frac{1}{3}}}{\left(k l_{ \pm} / \lambda_{1}\right)}\right\rfloor .
$$

When $L<T$ we have by Lemma 3.1 and (3.2) of [4]

$$
\begin{aligned}
\sum_{i \leq L} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) & \leq 2^{52 / 5}(p-1)^{4 / 5}\left(k l_{ \pm} / \lambda_{1}\right)^{6 / 5} \delta_{ \pm}^{-2 / 5} \sum_{i \leq L} i^{-4 / 5} \\
& \leq 2^{52 / 5}(p-1)^{4 / 5}\left(k l_{ \pm} / \lambda_{1}\right)^{6 / 5} \delta_{ \pm}^{-2 / 5} 5 L^{1 / 5} \\
& \leq 2^{9} 5^{2 / 3}\left(k l_{ \pm} / \lambda_{1}\right) \delta_{ \pm}^{-1 / 3}(p-1)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{L<i \leq N} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) & \leq 2^{26 / 5}(p-1)^{2 / 5}\left(k l_{ \pm} / \lambda_{1}\right)^{3 / 5} \delta_{ \pm}^{-1 / 5}(L+1)^{-2 / 5} \sum_{L<i \leq N} C_{ \pm}\left(\mathbf{u}_{i}\right) \\
& \leq 2^{26 / 5}(p-1)^{2 / 5}\left(k l_{ \pm} / \lambda_{1}\right)^{3 / 5} \delta_{ \pm}^{-1 / 5}(L+1)^{-2 / 5}(p-1) \\
& \leq 2^{8} 5^{2 / 3}\left(k l_{ \pm} / \lambda_{1}\right) \delta_{ \pm}^{-1 / 3}(p-1)
\end{aligned}
$$

giving $\lambda \sum_{i=1}^{N} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) \leq 768 \cdot 5^{2 / 3}\left(\lambda / \lambda_{1}\right) k l_{ \pm} \delta_{ \pm}^{-1 / 3}(p-1)$. Plainly $5^{-5 / 3} 2^{-7}(p-$ 1) $\frac{\delta_{ \pm}^{\frac{1}{3}}}{\left(k l_{ \pm} / \lambda_{1}\right)}$ is less than $\frac{1}{2} 2^{-7}(p-1) \frac{\delta_{ \pm}^{2}}{\left(k l_{ \pm} / \lambda_{1}\right)}$ and less than $\frac{1}{2} 2^{-9 / 2}(p-1) \frac{\left(k l_{ \pm} / \lambda_{1}\right)^{3 / 2}}{\delta_{ \pm}^{3}}$ when $\left(k l_{ \pm} / \lambda_{1}\right) \geq 5^{-2 / 3} 2^{-3 / 5} \delta_{ \pm}^{4 / 3}$. Thus $L<T$ (we assume $T \geq 1$ else the claim is trivial) unless $\left(k l_{ \pm} / \lambda_{1}\right)<5^{-2 / 3} 2^{-3 / 5} \delta_{ \pm}^{4 / 3}<\frac{1}{2} \delta_{ \pm}^{2}$ in which case

$$
\begin{aligned}
\sum_{i \leq T} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) & \leq 2^{52 / 5}(p-1)^{4 / 5}\left(k l_{ \pm} / \lambda_{1}\right)^{6 / 5} \delta_{ \pm}^{-2 / 5} 5 T^{1 / 5} \\
& \leq 2^{19 / 2} \cdot 5(p-1)\left(k l_{ \pm} / \lambda_{1}\right)^{3 / 2} \delta_{ \pm}^{-1} \\
& \leq 2^{43 / 5} \delta_{ \pm}(p-1)
\end{aligned}
$$

and

$$
\sum_{T<i \leq N} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) \leq 2^{37 / 5} \delta_{ \pm} \sum_{T<i \leq N} C_{ \pm}\left(\mathbf{u}_{i}\right) \leq 2^{37 / 5} \delta_{ \pm}(p-1)
$$

giving $\lambda \sum_{i \leq N} C_{ \pm}^{2}\left(\mathbf{u}_{i}\right) \leq\left(2^{43 / 5}+2^{37 / 5}\right) \delta_{ \pm} \lambda(p-1) \leq 557 \delta_{ \pm} \lambda(p-1)$.
Theorem 2 is just a special case of the following theorem with $k=d, l=1$.

Theorem 6. Let $1 \leq l<k<p-1$ be positive integers with $(k l, p-1)=1$, and for $M_{-}(k, l), k+l<p-1$. Let $d^{*}=(k \mp l, p-1)$, - for $M_{+}(k, l)$, + for $M_{-}(k, l)$. If $d^{*}<.18(p-1)^{16 / 23}$ then

$$
M_{ \pm}(k, l) \leq 13658 p^{66 / 23}
$$

Proof. Let k, l be integers with $l<k<p-1$ and $(k l, p-1)=1$. By Lemma 2 the bound on $M_{ \pm}(k, l)$ is trivial if $p^{3} \leq 13658 p^{66 / 23}$ and so we may assume that $p>10^{31}$. The idea is to make a transformation of the type $x \rightarrow x^{m}$ so that Lemma 3 can be effectively applied. Choose m so that

$$
\begin{equation*}
m k \equiv \alpha \quad \bmod (p-1), \quad \pm m l \equiv \beta \quad \bmod (p-1) \tag{22}
\end{equation*}
$$

(plus sign for S_{+}and minus for S_{-}) with

$$
\begin{equation*}
0 \leq \alpha \leq \frac{1}{c}(p-1)^{\frac{16}{23}}, \quad|\beta| \leq c(p-1)^{\frac{7}{23}}, \quad c=2^{60 / 23} 5^{-2 / 23}=5.3029 \ldots \tag{23}
\end{equation*}
$$

$(\alpha, \beta) \neq(0,0)$. Such a pair (α, β) exists since the set of all (α, β) satisfying (22) is a lattice of volume $p-1$. Now, $(p-1) \nmid m$ (since $(\alpha, \beta) \neq(0,0))$ and so, since $(l k, p-1)=1$ we have $\alpha \neq 0$ and $\beta \neq 0$. If $\alpha=\beta$ then $p-1\left|m(k \mp l), \frac{p-1}{d^{*}}\right| m$ and $|\beta| \geq(p-1) / d^{*}$ contradicting our assumption on the size of d^{*}. Thus $\alpha \neq \beta$. Set

$$
\beta^{\prime}=\left\{\begin{array}{l}
|\beta| \quad \text { if } \beta>0 \\
2|\beta| \quad \text { if } \beta<0
\end{array}\right.
$$

Case i: Suppose that $\alpha \leq 100|\beta|$. Then by Lemma 1 and (19) we have,

$$
M_{ \pm}(k, l) \leq M(\alpha, \beta) \leq 3 \alpha|\beta| p^{2} \leq 300|\beta|^{2} p^{2} \leq 8437 p^{60 / 23}
$$

Case ii: Suppose that $\alpha>100|\beta|$ and $\alpha \geq 2^{-5}(p-1)^{2 / 3} \lambda_{1}^{1 / 6}\left(\beta^{\prime}\right)^{1 / 6}$. Then $\left(\beta^{\prime}\right)^{1 / 6} \leq(32 / c) p^{2 / 69}, \beta^{\prime} \leq(32 / c)^{6} p^{4 / 23}$. By Lemma 1 and (19) we get

$$
M_{ \pm}(k, l) \leq M(\alpha, \beta) \leq \frac{3}{2} \alpha \beta^{\prime} p^{2} \leq \frac{3}{2 c} p^{16 / 23}\left(\frac{32}{c}\right)^{6} p^{4 / 23} p^{2} \leq 13658 p^{66 / 23}
$$

Case iii: Suppose that $\alpha>100|\beta|$ and that $\alpha<2^{-5}(p-1)^{2 / 3} \lambda_{1}^{1 / 6}\left(\beta^{\prime}\right)^{1 / 6}$, so that Lemma 3 applies. In particular, since $\delta_{ \pm}=|\alpha-\beta| / \lambda_{1}$ we have

$$
.99 \frac{\alpha}{\lambda_{1}} \leq \delta_{+} \leq \frac{\alpha}{\lambda_{1}}, \quad \frac{\alpha}{\lambda_{1}} \leq \delta_{-} \leq 1.01 \frac{\alpha}{\lambda_{1}}
$$

and $\beta^{\prime} \delta_{ \pm}^{-1 / 3} \leq 2|\beta| \alpha^{-1 / 3} \lambda_{1}^{1 / 3}$. The value μ in Lemma 3 is bounded by

$$
\begin{aligned}
\max & \left\{768 \cdot 5^{2 / 3}\left(\lambda / \lambda_{1}\right) \alpha 2|\beta| \alpha^{-1 / 3} \lambda_{1}^{1 / 3}, 557(1.01 \alpha)\right\} \leq \max \left\{1536 \cdot 5^{2 / 3} \alpha^{2 / 3}|\beta|^{4 / 3}, 563 \alpha\right\} \\
\leq & \max \left\{1536 \cdot 5^{2 / 3} c^{2 / 3}(p-1)^{20 / 23}, 563 c^{-1}(p-1)^{16 / 23}\right\} \\
& \leq \max \left\{13657.9(p-1)^{20 / 23}, 107(p-1)^{16 / 23}\right\}=13657.9(p-1)^{20 / 23}
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
M_{ \pm}(k, l) & \leq M(\alpha, \beta) \leq\left(c p^{7 / 23}\right)^{2} p^{2}+4(1 / c) p^{39 / 23} p+13657.9 p^{2} p^{20 / 23} \\
& \leq 29 p^{60 / 23}+.76 p^{62 / 23}+13657.9 p^{66 / 23} \leq 13658 p^{66 / 23}
\end{aligned}
$$

4. Proof of Theorem 3

Let A, d be integers such that $0<|A|<p / 2,|d|<p / 2,(A, d) \neq(1,1)$. Put $d_{1}=(p-1, d-1)$ and $k=(p-1) / d_{1}$. Let B be chosen so that $p \nmid B$ and $A B^{d-1} \not \equiv 1(\bmod p) ;$ such a B exists since either $d=1, A \neq 1$, or $d \neq 1$ and B^{d-1} takes on at least two distinct nonzero values $(\bmod p)$. Put $C \equiv A B^{d-1}(\bmod p)$ with $-p / 2<C<p / 2, C \neq 0,1$. Suppose that we can find an element of the form $B z^{k} \in \mathbb{E}$ such that $B C z^{k} \in \mathbb{O}$. Then $A\left(B z^{k}\right)^{d} \equiv B C z^{k} \in \mathbb{O}$, that is, $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty. Let $x \equiv B z^{k}(\bmod p), y \equiv B C z^{k}(\bmod p)$. We count the number N of solutions of the congruence $y \equiv C x(\bmod p)$ such that $x \in \mathbb{E}, B^{-1} x$ is a k-th power, and $y \in \mathbb{O}$. Then letting $\sum_{\psi^{k}=\psi_{0}}$ denote a sum over all multiplicative characters $\psi(\bmod p)$ satisfying $\psi^{k}=\psi_{0}$, where ψ_{0} is the principal character, we have

$$
\begin{align*}
N & =\frac{1}{k} \sum_{x}\left(\sum_{\psi^{k}=\psi_{0}} \psi\left(B^{-1} x\right)\right) \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(C x) \tag{24}\\
& =\frac{1}{k} \sum_{x} \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(C x)+\frac{1}{k} \sum_{\psi \neq \psi_{0}} \sum_{x} \psi\left(B^{-1} x\right) \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(C x) \tag{25}\\
& =\text { Main }+ \text { Error. } \tag{26}
\end{align*}
$$

Main Term: Suppose first that $1<C<p / 2$. The main term is just the number of values of $n \in\left\{1,2, \ldots, \frac{p-1}{2}\right\}$ such that $(2 j-1) p<2 n C<2 j p$ for some j, that is

$$
\frac{(2 j-1) p}{2 C}<n<\frac{j p}{C}
$$

with $1 \leq j \leq[C / 2]$. Thus, using $[x]-[x-y] \geq[y]$, we have

$$
\begin{equation*}
\text { Main }=\frac{1}{k} \sum_{j=1}^{[C / 2]}\left[\frac{j p}{C}\right]-\left[\frac{(2 j-1) p}{2 C}\right] \geq \frac{1}{k} \sum_{j=1}^{[C / 2]}\left[\frac{p}{2 C}\right]=\frac{1}{k}\left[\frac{C}{2}\right]\left[\frac{p}{2 C}\right] \tag{27}
\end{equation*}
$$

We consider first a few small values of C. Let S denote the sum appearing in the main term, $S=k$ (Main). If $C=2$ then $S=[p / 2]-[p / 4] \geq \frac{p-1}{4}$. If $C=3$ then $S=[p / 3]-[p / 6] \geq \frac{p-1}{6}$. For $C=4$ we have $S=([p / 4]-[p / 8])+([p / 2]-[3 p / 8]) \geq$ $\frac{p-3}{4}$.

For $\frac{p}{4}<C<\frac{p}{2}$ we have

$$
[C / 2][p / 2 C]=[C / 2] \geq \frac{C-1}{2} \geq \frac{p-3}{8}
$$

For $5 \leq C<p / 4$ we have

$$
\begin{aligned}
{[C / 2][p / 2 C] } & \geq \frac{C-1}{2}\left(\frac{p}{2 C}-\frac{2 C-1}{2 C}\right) \\
& =\frac{p}{4}+\frac{3}{4}-\left(\frac{p+1}{4 C}+\frac{C}{2}\right)
\end{aligned}
$$

The quantity being subtracted takes on its maximum value when $C=\frac{p-1}{4}$ and so we obtain

$$
\left[\frac{C}{2}\right]\left[\frac{p}{2 C}\right] \geq \frac{p-1}{8}-\frac{2}{p-1}>\frac{p-3}{8}
$$

Thus in all cases $S \geq(p-3) / 8$.

Next assume that $-p / 2<C \leq-1$. Then $2 n C \in \mathbb{O}$ if and only if $-2 n C$ is even and so we replace C with $-C$ and count the number of values n with $2 j p<2 n C<(2 j+1) p$ for some j with $0 \leq j \leq[(C-1) / 2]$. Then,

$$
\sum_{j=0}^{[(C-1) / 2]}\left[\frac{(2 j+1) p}{2 C}\right]-\left[\frac{j p}{C}\right] \geq\left[\frac{C+1}{2}\right]\left[\frac{p}{2 C}\right]
$$

and the lower bound follows as before. Thus we have uniformly,

$$
\begin{equation*}
\text { Main } \geq \frac{p-3}{8 k} \tag{28}
\end{equation*}
$$

Error Term: Let ψ be a nonprincipal character $(\bmod p)$. Then

$$
\begin{aligned}
\sum_{x} \psi\left(B^{-1} x\right) \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(C x) & =\sum_{x}\left(\sum_{y} a_{\mathbb{E}}(y) e_{p}(y x)\right)\left(\sum_{z} a_{\mathbb{O}}(z) e_{p}(z C x)\right) \psi\left(B^{-1} x\right) \\
& =\sum_{y} \sum_{z} a_{\mathbb{E}}(y) a_{\mathbb{O}}(z) G\left(y+C z, B^{-1}\right)
\end{aligned}
$$

where $G\left(y+C z, B^{-1}\right)$ is the Gauss sum $G\left(y+C z, B^{-1}\right)=\sum_{x} e_{p}((y+C z) x) \psi\left(B^{-1} x\right)$, of modulus \sqrt{p}, unless $y+C z=0$ in which case it vanishes. Thus we obtain from (32)

$$
\left|\sum_{x} \psi\left(B^{-1} x\right) \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(C x)\right| \leq \sqrt{p} \sum_{y}\left|a_{\mathbb{E}}(y)\right| \sum_{z}\left|a_{\mathbb{O}}(z)\right| \leq\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}
$$

and

$$
\mid \text { Error } \left\lvert\, \leq(1-1 / k)\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}\right.
$$

We conclude from (14) and (28) that N is positive provided that $\frac{p-3}{8} \geq(k-$ 1) $\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}$. If $d_{1}>1$ then $k \leq \frac{p-1}{2}$ and $\frac{p-3}{k-1} \geq \frac{p-1}{k}=d_{1}$. Thus N is positive provided that $d_{1}>8\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}$.

To prove part (b) of the theorem suppose that $p>2.1 \cdot 10^{7}$ and $d_{1}>10 \sqrt{p}$. In [4, Proposition 1.1] we proved

$$
\left|\sum_{x \neq 0} e_{p}\left(a x^{d}+b x\right)\right| \leq d_{1}+\frac{p^{3 / 2}}{d_{1}}
$$

for any nonzero a, b. Thus Theorem 5 can be applied if $d_{1}+\frac{p^{3 / 2}}{d_{1}}<\frac{p-7}{9}$. Otherwise, either
$d_{1}<\frac{1}{2}\left(\frac{p-7}{9}-\sqrt{\frac{(p-7)^{2}}{81}-4 p^{3 / 2}}\right) \quad$ or $\quad d_{1}>\frac{1}{2}\left(\frac{p-7}{9}+\sqrt{\frac{(p-7)^{2}}{81}-4 p^{3 / 2}}\right)$.
The first inequality fails for $d_{1}>10 \sqrt{p}$ and $p>811000$. Thus the second inequality holds true. But for $p>2.007 \cdot 10^{7}$, it implies that $d_{1}>8\left(\frac{4}{\pi^{2}} \log (p)+1\right)^{2} \sqrt{p}$. Thus part (a) of the theorem applies.

Remark: When $d=1$ there is no error term in the above calculation and we obtain that $|A \mathbb{E} \cap \mathbb{O}|>\frac{p-3}{8}$. Thus $A \mathbb{E} \cap \mathbb{O}$ is nonempty for any odd prime p and $A \neq 1$.

5. Proof of Theorem 4

If $d_{1} \leq .18(p-1)^{16 / 23}$ then by Theorem $2, M \leq 13658 p^{66 / 23}<.000823 p^{3}$ for $p \geq 2.26 \cdot 10^{55}$. The result then follows from Theorem 1. Otherwise $d_{1}>$ $.18(p-1)^{16 / 23}>10 \sqrt{p}$ for $p>8.3 \cdot 10^{8}$, and so Theorem $3(\mathrm{~b})$ yields the result.

6. Proof of Theorem 5

The proof proceeds identically as the proof of Theorem 1 the only change being in the estimate of E_{3}. We have

$$
\begin{aligned}
\left|E_{3}\right| & \leq \sum_{u \neq 0} \sum_{v \neq 0}|a(u, v)|\left|\sum_{x \neq 0} e_{p}\left(u x+v A 2^{d-1} x^{d}\right)\right| \leq \Phi_{d} \sum_{u \neq 0} \sum_{v \neq 0}|a(u, v)| \\
& \leq p^{2} \Phi_{d}\left(\sum_{u}\left|a_{I}(u)\right|^{2}-\left|a_{I}(0)\right|^{2}\right)\left(\sum_{v}\left|a_{I}(v) a_{J}(v)\right|-\left|a_{I}(0) a_{J}(0)\right|\right) \\
& =p^{2} \Phi_{d}\left(\frac{|I|}{p}-\frac{|I|^{2}}{p^{2}}\right)\left(\frac{|I|^{1 / 2}|J|^{1 / 2}}{p}-\frac{|I||J|}{p^{2}}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\mid \text { Error }\left.\left|\leq\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| \leq \frac{|I|^{\frac{5}{2}}|J|^{\frac{1}{2}}}{p}+\frac{|I|^{2}|J|}{p}+p^{-2} \Phi_{d}\right| I\right|^{\frac{3}{2}}|J|^{\frac{1}{2}}(p-|I|)\left(p-|I|^{\frac{1}{2}}|J|^{\frac{1}{2}}\right) \tag{29}
\end{equation*}
$$

The main term is again Main $=\frac{p-1}{p^{2}}|I|^{3}|J|$. With a calculator one can then check that \mid Error $\mid<$ Main provided that $\Phi_{d} \leq \frac{p-7}{9}$ and $p>2 \cdot 10^{6}$.

7. Finite Fourier Series

Let p be an odd prime, $e_{p}(\cdot)=e^{2 \pi i \cdot / p}$ and $\sum_{x}=\sum_{x=1}^{p}$. Any complex valued function α defined on \mathbb{Z}_{p} has a Fourier expansion

$$
\alpha(x)=\sum_{y} a(y) e_{p}(x y)
$$

where the coefficients $a(y)$ are given by

$$
\begin{equation*}
a(y)=\frac{1}{p} \sum_{x} \alpha(x) e_{p}(-x y) \tag{30}
\end{equation*}
$$

Let

$$
I=\{a+1, a+2, \ldots, a+M\} \subset \mathbb{Z}_{p}
$$

be an interval in \mathbb{Z}_{p} with $M \leq p$, and χ_{I} be the characteristic function of I with Fourier expansion $\chi_{I}(x)=\sum_{y} a_{I}(y) e_{p}(y x)$. Then

$$
a_{I}(0)=M / p, \quad a_{I}(y)=p^{-1} e_{p}\left(\left(-a-\frac{M}{2}-\frac{1}{2}\right) y\right) \frac{\sin (\pi M y / p)}{\sin (\pi y / p)}, \quad y \neq 0
$$

and

$$
\begin{equation*}
\sum_{y}\left|a_{I}(y)\right|=f(M, p):=\frac{1}{p} \sum_{y}\left|\frac{\sin (\pi M y / p)}{\sin (\pi y / p)}\right| \tag{31}
\end{equation*}
$$

where the summand is understood to be M when $y=0$. In [2] the first author proved

$$
f(M, p) \leq \frac{4}{\pi^{2}} \log p+1
$$

The main term in this upper bound cannot be improved. Indeed, in [3, Equation 5] Cochrane and Peral showed

$$
f(M, p)=\frac{4}{\pi^{2}} \log p+O(1)
$$

Letting $I=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$ we see that $\chi_{\mathbb{E}}(x)=\chi_{I}\left(2^{-1} x\right)$ and so $a_{\mathbb{E}}(y)=a_{I}(2 y)$ and $\sum_{y}\left|a_{\mathbb{E}}(y)\right|=\sum_{y}\left|a_{I}(y)\right|$. Thus,

$$
\begin{equation*}
\sum_{y}\left|a_{\mathbb{E}}(y)\right| \leq \frac{4}{\pi^{2}} \log p+1 \tag{32}
\end{equation*}
$$

The same holds for $\sum_{y}\left|a_{\mathbb{O}}(y)\right|$.
Let

$$
I=\left\{a_{1}+1, a_{1}+2, \ldots, a_{1}+M\right\}, \quad J=\left\{b_{1}+1, \ldots b_{1}+N\right\}
$$

be intervals of integers in \mathbb{Z}_{p} with $|I|=M,|J|=N$ and $1 \leq M, N<p$, and let χ_{I}, χ_{J} have Fourier expansions

$$
\chi_{I}(x)=\sum_{y} a_{I}(y) e_{p}(x y), \quad \chi_{J}(x)=\sum_{y} a_{J}(y) e_{p}(x y)
$$

The convolution $\chi_{I} * \chi_{J}$, defined by $\chi_{I} * \chi_{J}(x)=\sum_{u} \chi_{I}(u) \chi_{J}(x-u)$, has Fourier coefficients $p a_{I}(y) a_{J}(y)$.

Parseval's identity states that if α is any complex valued function on \mathbb{Z}_{p} with expansion $\alpha(x)=\sum_{y} a(y) e_{p}(x y)$ then

$$
p \sum_{y}|a(y)|^{2}=\sum_{x}|\alpha(x)|^{2}
$$

References

[1] J. Bourgain, Mordell's exponential sum estimate revisited, J. Amer. Math. Soc. 18, (2005), no. 2, 477-499.
[2] T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 27, (1987), 9-16.
[3] T. Cochrane and J.C. Peral, An asymptotic formula for a trigonometric sum of Vinogradov, J. Number Theory 91 (2001), 1-19.
[4] T. Cochrane and C. Pinner, Stepanov's method applied to binomial exponential sums, Quart. J. Math. 54 (2003), 243-255.
[5] _, An improved Mordell type bound for exponential sums, Proc. Amer. Math. Soc. 133 (2005), no. 2, 313-320.
[6] M. Goresky, A. Klapper, Arithmetic cross-correlations of FCSR sequences, IEEE Trans. Inform. Theory, 43 (1997), 1342-1346.
[7] M. Goresky, A. Klapper and R. Murty, On the distinctness of decimations of ℓ-sequences, (Proceedings of SETA'01), T. Helleseth, ed., Discrete Mathematics and Computer Science, Springer Verlag, NY, 2002.
[8] M. Goresky, A. Klapper, R. Murty and I. Shparlinski, On decimations of ℓ-sequences, SIAM J. Discrete Math. 18 (2004), no. 1, 130-140 (electronic).
[9] T. Gowers, A new proof of Szemerédis theorem for arithmetic progressions of length 4, GAFA 8 (1998), no. 3, 529-551.
[10] S. Konyagin and I. Shparlinski, Character sums with exponential functions and their applications, Cambridge Univ. Press 136, United Kingdom, 1999.

14EAN BOURGAIN, TODD COCHRANE, JENNIFER PAULHUS, AND CHRISTOPHER PINNER
[11] H. Xu and W.F. Qi, Further results on the distinctness of decimations of l-sequences, IEEE Trans. on Info. Theory 52 (2006), no. 8, 3831-3836.

School of Mathematics, Institute of Advanced Study, Princeton, NJ 08540, USA
E-mail address: Bourgain@math.ias.edu
Department of Mathematics, Kansas State University, Manhattan, KS 66506
E-mail address: cochrane@math.ksu.edu
Department of Mathematics, Kansas State University, Manhattan, KS 66506
E-mail address: paulhus@math.ksu.edu
Department of Mathematics, Kansas State University, and Manhattan, KS 66506
E-mail address: pinner@math.ksu.edu

[^0]: Date: October 9, 2008.

