

Introduction

A curve with the property that the size of its automorphism group attains the maximum bound for its genus is called a *Hurwitz curve*. In certain cases these curves have automorphism group $\mathsf{PSL}(2,q)$, the projective special linear group of 2×2 matrices with entries in \mathbb{F}_q .

Theorem (MacBeath, [2])

PSL(2,q) is the automorphism group of a Hurwitz curve if and only if (1) q = 7 or (2) q is a prime and congruent to $\pm 1 \mod 7$ or (3) $q = p^3$ for a prime $p \equiv \pm 2$ or $\pm 3 \mod 7$.

Let X be such a curve with automorphism group $G = \mathsf{PSL}(2,q)$, g the genus of X, and JX its Jacobian variety. We study factorizations of JXusing representation theory and techniques from [3]. Since

$$\mathbb{Q}G \cong \bigoplus M_{n_i}(\Delta_i)$$

where $M_{n_i}(\Delta_i)$ is $n_i \times n_i$ matrices with coefficients in a division ring Δ_i , our decomposition is:

$$JX \sim \bigoplus_{i} \left(e_i(JX) \right)^{n_i}$$

where e_i are certain idempotents in $End(JX) \otimes_{\mathbb{Z}} \mathbb{Q}$. Also,

$$\dim(e_i(JX)) = \frac{1}{2} \langle \chi, \varphi_i \rangle$$

where $\langle \chi, \varphi_i \rangle$ denotes the inner product of χ , a special character we define below, with φ_i , the *i*th irreducible Q-character, labeled according to the decomposition in (1).

Properties of PSL(2, q)

The conjugacy classes of $\mathsf{PSL}(2,q)$ are generated by the identity element e_G , elements we call c and d, and powers of elements called a and bwhere $o(a) = \frac{q-1}{2}$, $o(b) = \frac{q+1}{2}$, and o(c) = o(d) = q. Define ε to be a primitive (q-1)-th root of unity and δ a primitive (q+1)-th root of unity with $\varepsilon_{kn} = \varepsilon^{2kn} + \varepsilon^{-2kn}$ and $\delta_{tm} = -(\delta^{2tm} + \delta^{-2tm})$.

Table 1 :	Character	Table of	PSL(2,q)	when $q \equiv$	≡ 1 mod

	$[e_G]$	$[a^n]$	$[b^m]$	$\begin{bmatrix} c \end{bmatrix}$	[d]
1_G	1	1	1	1	1
λ	q	1	-1	0	0
μ_k	q+1	ε_{kn}	0	1	1
θ_t	q - 1	0	δ_{tm}	-1	-1
χ_1	$\frac{q+1}{2}$	$(-1)^n$	0	$\frac{1+\sqrt{q}}{2}$	$\frac{1-\sqrt{q}}{2}$
χ_2	$\frac{q+1}{2}$	$(-1)^n$	0	$\frac{1-\sqrt{q}}{2}$	$\frac{1+\sqrt{q}}{2}$

Here $1 \le m, n, t \le \frac{q-1}{4}$ and $1 \le k \le \frac{q-5}{4}$. There is a similar table for $q \equiv -1 \mod 4$. The irreducible Q-characters are 1_G , λ , $\chi_1 + \chi_2$, combinations of the μ_k for $d \mid \frac{q-1}{2}$, and combinations of the θ_t for $d \mid \frac{q+1}{2}$.

Jacobian Varieties of Hurwitz Curves Allison Fischer, Mouchen Liu, and Jennifer Paulhus

(1)

(2)

(3)

The automorphism groups of a Hurwitz curves are finite quotients of the (2,3,7) triangle group so monodromy of the covering $X \to X/G$ (which we will need to compute χ) consists of one element each in G of order 2, 3, and 7. The following result helps us determine the monodromy.

Proposition

When G = PSL(2, q) for q odd, q > 27, and q satisfying one of (2) or (3) in the Theorem above, then G has three distinct conjugacy classes of elements of order 7, and one each of elements of order 2 and 3.

Calculation of χ

Let g_2 , g_3 , and g_7 be the elements of the monodromy. The formula for the Hurwitz character χ is

 $\chi = 2 \cdot 1_G + \chi_{\langle 1_G \rangle} - \chi_{\langle q_2 \rangle} - \chi_{\langle q_2 \rangle}$

where $\chi_{\langle h \rangle}$ for $h \in G$ is defined as follows:

$$\chi_{\langle h
angle}(g) = rac{1}{|\langle h
angle|} \sum_{x \in G} \chi^o(xgx^{-1}), ext{ where } \chi^o(gx^{-1})$$

If we let $\chi' = \chi_{\langle 1_G \rangle} - \chi_{\langle g_2 \rangle} - \chi_{\langle g_3 \rangle} - \chi_{\langle g_7 \rangle}$ then $\langle \chi, \varphi_i \rangle = \langle \chi', \varphi_i \rangle$ if $\varphi_i \neq 1_G$ so we compute χ' instead of χ . Also note that by its definition, $\chi'(g) = 0$ if g is not of order 1, 2, 3, or 7.

Table 2 : Values of χ' on conjugacy classes of elements of order 1, 2, 3, and 7.

q	Val	Value for elements of order			q	Value for elements of orde			
mod8	4 1	2	3	7	mod84	1	2	3	7
1	$\frac{ G }{42}$	$-\left(\frac{q-1}{2}\right)$	$-\left(\frac{q-1}{3}\right)$	$-\left(\frac{q-1}{7}\right)$	—1	$\frac{ G }{42}$	$-\left(\frac{q+1}{2}\right)$	$-\left(\frac{q+1}{3}\right)$	$-\left(\frac{q+1}{7}\right)$
13	$\frac{ G }{42}$	$-\left(\frac{q-1}{2}\right)$	$-\left(\frac{q-1}{3}\right)$	$-\left(\frac{q+1}{7}\right)$	-13	$\frac{ G }{42}$	$-\left(\frac{q+1}{2}\right)$	$-\left(\frac{q+1}{3}\right)$	$-\left(\frac{q-1}{7}\right)$
29	$\frac{ G }{42}$	$-\left(\frac{q-1}{2}\right)$	$-\left(\frac{q+1}{3}\right)$	$-\left(\frac{q-1}{7}\right)$	-29	$\frac{ G }{42}$	$-\left(\frac{q+1}{2}\right)$	$-\left(\frac{q-1}{3}\right)$	$-\left(\frac{q+1}{7}\right)$
43	$\frac{ G }{42}$	$-\left(\frac{q+1}{2}\right)$	$-\left(\frac{q-1}{3}\right)$	$-\left(\frac{q-1}{7}\right)$	-43	$\frac{ G }{42}$	$-\left(\frac{q-1}{2}\right)$	$-\left(\frac{q+1}{3}\right)$	$-\left(\frac{q+1}{7}\right)$

Inner Product Computations

We now compute the inner product of the Hurwitz character with the irreducible Q-characters of G. Since $\langle \chi, 1_G \rangle = 0$ and all other irreducible \mathbb{Q} -characters have degree greater than 1,

Proposition

No Hurwitz curve with automorphism group PS Jacobian variety.

Now $\langle \chi,\lambda
angle=rac{q-u}{42}$ and $\langle \chi,\chi_1+\chi_2
angle=rac{q-v}{42}$ where u and v are given in Table 3. For every $d \mid \frac{q-1}{2}$ and $d < \frac{q-5}{4}$ if $q \equiv 1 \mod 4$, or $d < \frac{q-3}{4}$ if $q \equiv -1 \mod 4$, there is an irreducible Q-character which is the sum of several μ_k .

$$\langle g_3
angle = \chi_{\langle g_7
angle}$$

 $(g) = \begin{cases} 1 \text{ if } g \in \langle h \rangle \\ 0 \text{ if } g \notin \langle h \rangle. \end{cases}$

$$\mathcal{SL}(2,q)$$
 has a simple

$q \mod 168$	u	v	$q \mod 168$	U	v
±1	± 85	± 169	$\pm 43 \mod 168$	± 43	± 43
±13	± 13	± 13	$\pm 85 \mod 168$	± 85	± 85
± 29	± 29	± 29	$\pm 97 \mod 168$	± 13	± 97
± 41	∓ 43	± 41	$\pm 113 \mod 168$	± 29	± 113

The inner product of this character with χ is given by $rac{\phi\left(rac{q-1}{2d}
ight)(q-w_{\mu})}{_{\mathcal{R}\mathcal{A}}}$ where w_{μ} is determined by the least residue of $q \mod 84$ as well as the number of 2, 3, and 7 which divide d, and ϕ is Euler's phi-function. Similar results hold for $\langle \chi, \theta_t \rangle$ with some constant w_{θ} .

We now combine (1) and the inner product computations from the previous section.

Theorem

x. Let u, v, w_{μ} and w_{θ} be as described above.

$$A^{q}_{\frac{q-u}{84}} \times A^{\frac{q+1}{2}}_{\frac{q-v}{84}} \times \prod_{\substack{d \mid \frac{q-1}{2} \\ d \mid \frac{q-1}{2} \\ d < \frac{q-5}{4}}} A^{q-1}_{\frac{\phi}{4}}$$

$$\begin{array}{l} A^q_{\frac{q-u}{84}} \times A^{\frac{q-1}{2}}_{\frac{q-v}{84}} \times \prod_{\substack{q \neq 1 \\ d \mid \frac{q-1}{2} \\ d < \frac{q-3}{4}}} A^{q+1}_{\frac{\phi}{4}} \end{array}$$

Acknowledgements

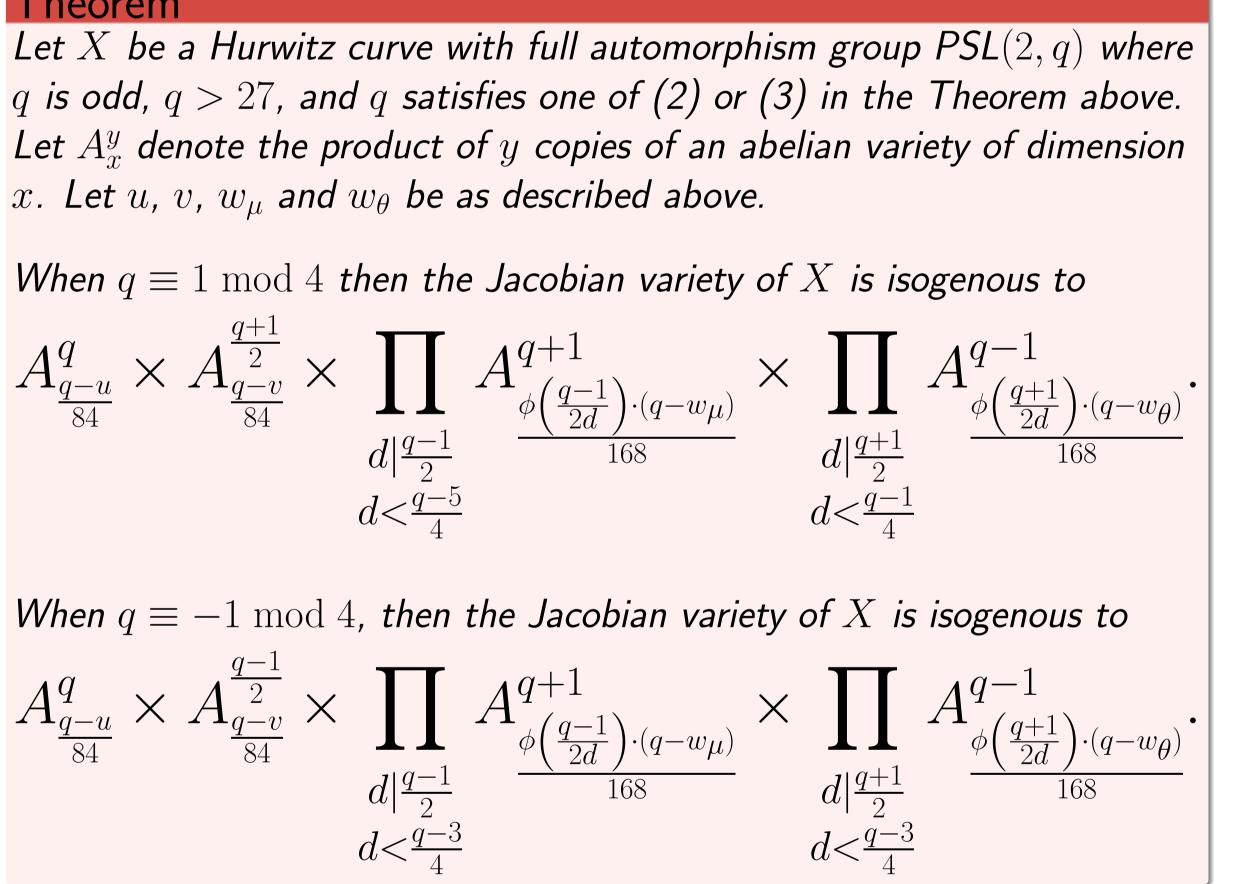
The authors are grateful to Grinnell College for generous summer funding through the Mentored Advanced Project program for undergraduates.

Keterences

- Studies v. 180, Amsterdam, 1994.
- Arithmetica. 132, no. 3, 231-244, 2008.

Table 3 : Values of u and v for $\langle \chi, \lambda \rangle$ and $\langle \chi, \chi_1 + \chi_2 \rangle$, respectively.

Kesults



[1] Karpilovsky, G. Group Representations: Volume 3. North-Holland Mathematics

[2] Macbeath, A. M. *Generators of the linear fractional group*. Number Theory, (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967), Providence, R.I., 14–32, 1969. [3] Paulhus, J. Decomposing Jacobians of curves with extra automorphisms. Acta