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Abstract. Given a fixed genus g, we would like to know the largest possible integer t

such that t copies of one elliptic curve E appear in the decomposition of the Jacobian
variety JX for some curve X of genus g. In this paper we find nontrivial lower bounds

for t for genus up to 10. For genus 3 through 6 we demonstrate curves X such that

JX∼Eg .

1. Introduction

Many interesting questions may be asked about the decomposition of Jacobians of

curves. For instance, Ekedahl and Serre [6] find curves which have completely decom-

posable Jacobians (Jacobians which are isogenous to the product of g not necessarily

isogenous elliptic curves). Number theoretic properties of the elliptic curves that show

up in the decomposition of Jacobians of genus 2 curves have been extensively studied.

Over finite fields, curves whose Jacobians decompose in certain ways have applications

in cryptography [5]. We are particularly interested in the following questions for curves

over an algebraically closed field of characteristic zero.

Question 1. For which genus g can we find a curve X of genus g such that the Jacobian

variety of that curve JX is isogenous to the product of g copies of one elliptic curve E?

If we cannot find such a curve for a certain genus, we would like to know the bound

on the number of isogenous elliptic curves in the decompositions of Jacobians for curves

of that genus.

Question 2. Given a fixed genus g, what is the largest possible integer t such that t

copies of an elliptic curve E appear in the decomposition of JX for some curve X of

genus g?

For curves over a field of characteristic p, partial positive answers to Question 1 are

already known. For example, let r = pk and consider the curve X : xr+1+yr+1+zr+1 = 0
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over the algebraic closure of Fp. For each k the Jacobian variety of this curve is isogenous

to Eg for some elliptic curve E where g is the genus of this curve, g = r(r − 1)/2.

In this paper, we find new examples of nontrivial lower bounds on t for curves of genus

up to 10 and positively answer Question 1 for genus 4 through 6. In genus 3 it is known

that the Jacobian variety of the (non-hyperelliptic) Klein curve x3y + y3z + z3x = 0 is

isomorphic to three isomorphic elliptic curves [16]. We find a hyperelliptic curve of genus

3 which positively answers Question 1. This particular curve is also demonstrated in [13]

using different techniques.

In Section 2 we describe our methods for decomposing Jacobians. In Sections 3 and 4

we evaluate the factors of these decompositions, first for hyperelliptic curves of genus 3

and 4 and then for arbitrary curves up to genus 10.

We denote the cyclic group and dihedral group of order n as Cn and Dn, respectively.

The group Dn is generated by elements r and s of orders n/2 and 2, respectively. The

group Un is given by generators and relations 〈a, b | a2, b2n, ababn+1〉, the group Vn is

〈a, b | a4, bn, (ab)2, (a−1b)2〉, and the group Hn is 〈a, b | a4, b2a2, (ab)n〉. Throughout, any

field will be of characteristic 0, ζn denotes a primitive n-th root of unity, and the Ei

denote elliptic curves.

2. Techniques

Given a curve X with G ⊆ Aut(X), there is a canonical map of Q-algebras e : Q[G] →
End0(JX)=End(JX) ⊗Z Q. Relations on the idempotents of End0(JX) may be defined

as follows.

Definition. For εi ∈ End0(JX), we say that ε1 ∼ ε2 if χ(ε1) = χ(ε2) for all virtual

Q-characters χ of End0(JX).

The following result of Kani and Rosen shows that these relations in turn lead to

isogeny relations among the images of JX under these idempotent endomorphisms.

Theorem 1 (Theorem A, [12]). Let ε1, . . . , εn, ε′1, . . . , ε
′
m ∈ End0(JX) be idempotents.

Then the idempotent relation

ε1 + · · ·+ εn ∼ ε′1 + · · ·+ ε′m

holds in End0(JX) if and only if we have the isogeny relation

ε1(JX) + · · ·+ εn(JX) ∼ ε′1(JX) + · · ·+ ε′m(JX).
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Idempotent relations in Q[G] lead via the map e to idempotent relations in End0(JX).

We find idempotent relations in Q[G] which involve the identity of the group ring which

translate, through e and Theorem 1, to isogeny relations among JX itself and images of

JX under various endomorphisms. By evaluating these images, we find a decomposition

of JX .

Given a subgroup H of G, one way to create isogeny relations in Q[G] is to consider

relations among the idempotents of the form

εH =
1
|H|

∑
h∈H

h.

In particular, this leads to a decomposition of JX in terms of Jacobians of quotient curves

X/H.

Theorem 2 (Theorem B, [12]). Given a curve X, let G ≤Aut(X) be a finite group such

that G = H1 ∪ · · · ∪Hm where the subgroups Hi satisfy Hi ∩Hj = 1G if i 6= j. Then we

have the following isogeny relation

Jm−1
X × Jg

X/G ∼ Jh1
X/H1

× · · · × Jhm

X/Hm

where g = |G| and hi = |Hi| and Jr means the product of J with itself r times.

This method of generating idempotent relations has several limitations. Certain

groups have no nontrivial relations on these idempotents (for instance the quaternion

group of order 8 which is the automorphism group of a genus 4 hyperelliptic curve). Any

factors of JX that are not Jacobians of quotients of X by a subgroup of G will also not

appear. However, finding genera and equations for the quotient curves X/Hi is straight-

forward.

A second way to create isogeny relations involves decomposing the group ring Q[G]

into a sum of matrix rings over division rings. A theorem of Wedderburn ([4], Chapter

18, Theorem 4) implies for any finite group G, the group ring Q[G] is isomorphic to the

direct sum of matrix rings over division rings ∆i, Q[G] ∼=
⊕

i Mni(∆i). Let πi,j denote

the idempotent of Q[G] which is zero everywhere except at the ith component in this

decomposition where it is the matrix with a 1 in the (j, j) position and 0 elsewhere. Let

e : Q[G] → End0(JX) be as above. We apply Theorem 1 to the idempotent relation
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1Q[G] =
∑
i,j

πi,j to get the relation

(1) JX ∼
⊕
i,j

e(πi,j)JX .

This relation exists for any group G but evaluating the factors is more difficult than in

the previous case. This equation is also derived in [7] using a different technique.

3. Hyperelliptic Curves

We begin by studying hyperelliptic curves of genus 3 and 4 since these curves have

well known automorphism groups [1], [18]. While the techniques we use to decompose

Jacobians work for curves over any field, we must fix a field to compute the curve’s

automorphism group. Since in [1] and [18] the authors compute automorphism groups of

curves defined over algebraically closed fields of characteristic zero, our decompositions

are for algebraically closed fields of characteristic zero. If we consider the curves to be

defined over the field of definition of their automorphism group, as computed in the

papers above, then the curve will still have the same automorphism group and thus the

same Jacobian decomposition as we find below.

Given a genus 3 or 4 hyperelliptic curve X whose automorphism group contains a

subgroup G satisfying the conditions of Theorem 2, we apply Theorem 2 to produce an

isogeny relation between the Jacobian of the curve and the product of Jacobians of some

of its quotient curves. We use the following well known results to determine the structure

of these factors.

Theorem 3 (Hurwitz). Given a non-constant separable map φ : X → Y of smooth

curves over k, let eφ(P ) be the ramification index of φ at P , then

2gX − 2 = (deg φ)(2gY − 2) +
∑
P∈X

(eφ(P )− 1).

Fact 1. If X is a curve of genus g then JX has dimension g.

Fact 2. Suppose H1 and H2 are subgroups of any finite group G that are conjugates of

each other. Then X/H1
∼= X/H2.

Depending on the particular curve, we may use these results in a variety of ways.

• Suppose a curve X has an automorphism group that contains a subgroup G satisfying

the conditions of Theorem 2 and that H is one of the subgroups from Theorem 2. We

apply Theorem 3 to the map φH : X 7→ X/H (recall this map has degree |H|) to
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determine the genus of X/H which gives us, by Fact 1, the dimension of one factor of

the Jacobian of X.

In order to apply Theorem 3 we must be able to determine eφ(P ) for every point P

at which φH is ramified. We use the fixed points of the automorphism σ to determine

these values. See Hartshorne ([10], ex. 4.2.5) for the relation between ramification and

fixed points.

• Sometimes we have an isogeny relation from Theorem 2 involving a power of the

Jacobian we would like to decompose. For instance, if the automorphism group of a

curve contains the group 〈a, b〉 ∼= C2 × C2, Theorem 2 produces the following isogeny

(2) J2
X × J4

X/〈a,b〉 ∼ J2
X/〈a〉 × J2

X/〈b〉 × J2
X/〈ab〉.

However we are interested in how the Jacobian of the curve itself decomposes. To rectify

this situation we apply Poincaré’s complete reducibility theorem to (2) to get

(3) JX × J2
X/〈a,b〉 ∼ JX/〈a〉 × JX/〈b〉 × JX/〈ab〉.

• Finally, the isogeny relation in Theorem 2 must have equal total dimensions on both

sides so we may also use dimension arguments to find the dimension of some of the factors

if others are known.

Invariants for computing the automorphism group of genus 2 curves were classified by

Igusa [11] and decompositions of the Jacobians of these curves have already been studied

[9]. For higher genus hyperelliptic curves all possible automorphism groups have also

been classified [1], [18]. We therefore begin by applying the preceding techniques to the

list of groups which are automorphism groups of hyperelliptic curves of genus 3 and 4.

The Jacobian decompositions we find will work for any curve of the given genus with

automorphism group containing the group we list, regardless of the field over which the

curve is defined.

Again, this technique is not able to give us information about certain genus 3 and 4

curves. For example, the curve y2 = x(x4 − 1)(x4 + 1) has automorphism group Q8, the

quaternion group of order 8. Since the subgroup of order 2 is contained in every nontrivial

subgroup of this group, we cannot find a nontrivial relation among the idempotents and

so cannot find a decomposition of the Jacobian using the method outlined above.
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Theorem 4. If X is a genus 3 or 4 curve with automorphism group containing one of

the groups in the first columns of Table 1, then JX decomposes as in the second columns

of this table where Y is a genus 2 curve and Ei some elliptic curve.

Genus 3 Genus 4
Auto. Jacobian Auto. Jacobian
Group Decomposition Group Decomposition
C2 × C2 E × JY C2 × C2 JY1 × JY2

D4 × C2 E1 × E2 × E3 V2
∼= D8 J2

Y

H2 E2
1 × E2 D8 J2

Y

U2 E2
1 × E2 D16 J2

Y

D12 E2
1 × E2 D10 × C2 JY1 × JY2

D8 × C2 E2
1 × E2 U8 J2

Y

U6 E2
1 × E2 V10 J2

Y

V8 E2
1 × E2

S4 × C2 E3

Table 1. Decompositions for Genus 3 and 4 Hyperelliptic Curves

We prove this theorem in Sections 3.2 and 3.3. We begin with several general results

which will assist us in proving Theorem 4.

3.1. General Cases.

3.1.1. C2×C2. Any hyperelliptic curve of the form y2 = x2g+2 +α1x
2g +α2x

2g−2 + · · ·+
αgx

2 +1 where g is the genus of the curve, has automorphism group containing C2×C2.

We use Theorem 2 to give us a decomposition of the Jacobian of curves of this form for

any genus.

Theorem 5. Any curve X of the form above has a Jacobian that decomposes as JX ∼
JX1 × JX2 .

• If g ≡ 0 (mod 2) then gX1 = gX2 = g/2.

• If g ≡ 1 (mod 2) then gX1 = (g − 1)/2 and gX2 = (g + 1)/2.

Proof. Applying Theorem 2 to the group C2 × C2 gives the following isogeny

(4) J2
X ∼ J2

X/〈a〉 × J2
X/〈b〉 × J2

X/〈ab〉.

The three nontrivial automorphisms of this curve send y to −y and fix x (b), send x to

−x and fix y (a), and send both x and y to their negatives (ab).
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In both cases, the first automorphism is the hyperelliptic involution and so the quotient

of X by this automorphism is a genus 0 curve so we disregard it in (4) to get

JX ∼ JX1 × JX2

where X1 = X/〈a〉 and X2 = X/〈ab〉.
When g ≡ 0 (mod 2), the automorphism a has two fixed points (0,±1) as does the

automorphism ab (the two points at infinity are fixed). If we apply Theorem 3 to either

automorphism, we see that

2g − 2 = 2(2gXi − 2) + 2

g = 2gXi

so gXi
= g/2.

When g ≡ 1 (mod 2), the automorphism a has four fixed points (0,±1) as well as the

two points at infinity. However, the automorphism ab has no fixed points. In these cases

Theorem 3 gives

2g − 2 = 2(2gX1 − 2) + 4

g − 1 = 2gX1

and

2g − 2 = 2(2gX2 − 2) + 0

g + 1 = 2gX2 .

so gX1 = (g − 1)/2 and gX2 = (g + 1)/2. �

3.1.2. D2m. Let X be a curve such that Aut(X) ⊇ D2m = 〈r, s| rm, s2, (rs)2〉.
We consider two cases, m odd and m even.

• m odd.

In this case, all involutions in D2m are in the same conjugacy class. Applying

Theorem 2 gives us

(5) JX × J2
X/D2m

∼ JX/〈r〉 × J2
X/〈s〉.

We let P (A/B) denote the Prym variety of A over B. If JX/D2m
∼= P1 then

JX/〈r〉 × P (X/ X/〈r〉) ∼ JX ∼ JX/〈r〉 × J2
X/〈s〉.

And so by Poincaré’s complete reducibility theorem we have that P (X/ X/〈r〉) ∼=
J2

X/〈s〉. This particular result is stated in [17] with a different proof.

More general results involving Jacobian decompositions and Prym varieties may

also be found in [3]. We obtain several of their decompositions using our techniques
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by replacing JX/〈r〉 with JX/D2m
× P (X/〈r〉 / X/D2m) and replacing JX/〈s〉 with

JX/D2m
× P (X/〈s〉 / X/D2m) in (5).

• m even.

In this case we have from Theorem 2 the decomposition

(6) JX × J2
X/D2m

∼ JX/〈rm/4〉 × JX/〈s〉 × JX/〈srm/4〉.

When m is a power of two, s and srm/4 are conjugates of each other which yields

(7) JX × J2
X/D2m

∼ JX/〈rm/4〉 × J2
X/〈s〉.

When D2m is the full automorphism group of the curve, rm/4 is the hyperelliptic

involution and so (6) becomes

JX ∼ JX/〈s〉 × JX/〈srm/4〉

while (7) is

JX ∼ J2
X/〈s〉.

3.2. Genus 3. In most genus 3 cases, we obtain the finest decomposition by looking

at a subgroup of the automorphism group isomorphic to C2 × C2 (〈a, b〉) and applying

Theorem 5. We prove Theorem 4 for a few cases. The other cases follow in a similar

way.

3.2.1. C2 × C2. Any curve X whose full automorphism group is isomorphic to C2 × C2

has only two non-hyperelliptic involutions. By Theorem 5 we know the quotient of X by

one of the involutions must be of genus one and the other quotient must be of genus two.

(We can also see this by applying Theorem 3 and information about the fixed points of

each automorphism.) Thus JX ∼ E × JY for some elliptic curve E and a genus 2 curve

Y .

3.2.2. D4×C2. This group has subgroups isomorphic to C2×C2, 〈a, c〉. Unlike our previ-

ous case, however, there are subgroups of this form which do not contain the hyperelliptic

involution and so we are able to get more information about the Jacobian of this curve.

Theorem 2 produces

JX × J2
X/〈a,c〉 ∼ JX/〈a〉 × JX/〈c〉 × JX/〈ac〉.

Considering fixed points and using Theorem 3, we conclude that each quotient on the

right has genus one and so JX ∼ E1 × E2 × E3 for three elliptic curves.
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3.2.3. D12. The group D12 has a subgroup isomorphic to S3 generated by s and r2.

Theorem 2 then gives

(8) J3
X × J6

X/〈r2,s〉 ∼ J3
X/〈r2〉 × J2

X/〈s〉 × J2
X/〈sr2〉 × J2

X/〈sr4〉.

The last three Jacobians of quotient curves on the right are isogenous by Fact 2 and so

(8) may be rewritten as

(9) J3
X × J6

X/〈r2,s〉 ∼ J3
X/〈r2〉 × J6

X/〈s〉.

By applying Poincaré’s complete reducibility theorem to (9) we reduce the exponents

(10) JX × J2
X/〈r2,s〉 ∼ JX/〈r2〉 × J2

X/〈s〉.

Both curves on the right side of (10) are genus 1 and so X/〈r2, s〉 must be genus 0 by

dimension arguments. Thus JX is isogenous to the product of three elliptic curves, two

of which are isogenous.

Any hyperelliptic curve of genus 3 with automorphism group containing D12 over

an algebraically closed field of characteristic zero is isomorphic to a curve of the form

y2 = x (x6 + αx3 + 1) for some α in the field.

The automorphism group of this curve is given by generators r : (x, y) → (ζ3x, ζ6y)

and s : (x, y) → (1/x, y/x4). The quotient map from X to X/〈s〉 is given by

(x, y) →
(

x +
1
x

, y +
y

x4

)
while the quotient map from X to X/〈r2〉 is given by

(x, y) → (x3, xy).

Computations with resultants yield that X/〈s〉 is isomorphic to the curve y2 = x3−3x+α

which has j invariant 6912/(4 − α2) while X/〈r2〉 is isomorphic to y2 = x3 + αx2 + x

which has j-invariant 256(α2 − 3)3/(α2 − 4).

3.2.4. S4×C2. There is only one curve over an algebraically closed field of characteristic

zero, up to isomorphism, with automorphism group S4 × C2, the curve X : y2 = x8 +

14x4 + 1. This group has a subgroup H = 〈((12)(34), 1C2), ((13)(24), 1C2)〉 which is

isomorphic to C2 × C2. The element ((12)(34), 1C2) represents the automorphism that

sends (x, y) to (− 1
x , y

x4 ) and the element ((13)(24), 1C2) represents the automorphism

that sends (x, y) to (−x, y). Applying Theorem 2 to the subgroup H gives

(11) JX ∼ JX/〈((12)(34),1C2 )〉 × JX/〈((13)(24),1C2 )〉 × JX/〈((14)(23),1C2 )〉.
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All the subgroups on the right side of (11) are conjugates thus by Fact 2 JX ∼ E3. This

positively answers Question 1 for genus 3. This elliptic curve is y2 = x4 +14x2 +1 which

has j-invariant 35152
9 and is isogenous to X0(24).

3.3. Genus 4. As with the genus 3 cases, all the automorphism groups of genus 4 curves

which we consider have subgroups isomorphic to C2 × C2. Theorem 5 gives us that

JX ∼ JX1 × JX2 where Xi are possibly isogenous genus 2 curves.

Unfortunately, all the genus 2 quotient curves have cyclic automorphism groups and

so we cannot decompose them further (at least using this method) into the product of

two elliptic curves. Again, we demonstrate with several examples.

3.3.1. D8 and D16. Let X be a curve whose automorphism group contains D8 or D16.

Let n = 8 or 16 (the order of the group). In either case, we form the following isogeny

relation from Theorem 2

(12) JX × J2
X/〈rn/4,s〉 ∼ JX/〈rn/4〉 × JX/〈s〉 × JX/〈srn/4〉.

In both cases rn/4 is the hyperelliptic involution and so X/〈rn/4〉 has genus 0. Also, s

and srn/4 are in the same conjugacy class so JX/〈s〉 and JX/〈srn/4〉 (both genus 2 curves)

are isogenous. So, from (12) we conclude that JX is the square of the Jacobian of a genus

2 curve. Alternatively we may draw the same conclusion from Section 3.1.2, m even.

3.3.2. D10 × C2 ' D20. As with the previous cases, there are quite a few subgroups

of D20 which are isomorphic to C2 × C2 and contain the hyperelliptic involution r5.

However, unlike the previous case, none of these subgroups contain two elements from

the same conjugacy class. The best we can conclude is that the Jacobian of curves in

this family is the product of two Jacobians of genus 2 curves

(13) JX ∼ JX/〈s〉 × JX/〈sr5〉.

3.4. Genus 5. As a special example of Theorem 2, we demonstrate an infinite family

of hyperelliptic curves of genus 5 whose Jacobians are isogenous to the product of 4

isogenous copies of one elliptic curve and one copy of a non-isogenous elliptic curve.

The curve X : y2 = x12+αx6+1, for α in our algebraically closed field of characteristic

zero, has automorphism group D12 × C2 over Q(
√
−3), the field of definition of the

automorphism group of this curve over C. We apply Theorem 2 to the subgroup of the

automorphism group of this curve that is generated by the hyperelliptic involution and
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the involution that sends x to −x and fixes y. This gives that JX ∼ JA1 × JA2 where

A1 : y2 = x6 +αx3 +1 and A2 : y2 = x(x6 +αx3 +1). The Jacobian of A1 is isogenous to

the square of the elliptic curve E1 : y2 = x3 + (3x + 2 + α)2 (see [5]) while we know from

Section 3.2.3 that the Jacobian of A2 is isogenous to E2
2×E3 where E2 : y2 = x3−3x+α

and E3 : y2 = x3 + αx2 + x.

For every positive integer n there is a polynomial in two variables Φn(j1, j2) which

takes as input two j-invariants of elliptic curves and outputs a zero if there is an n-isogeny

between the two elliptic curves (often referred to as a “modular polynomial”). Hence,

for all n ∈ Z>0 there is an α which is found by plugging the j-invariants of E1 and E2

into Φn and solving for the α that makes this polynomial zero. The E1 and E2 with this

particular α value are thus n-isogenous. This produces an infinite family of hyperelliptic

curves such that JX
∼= E4

1 × E3.

4. Curves with g ≤ 10

For higher genus curves, the idempotent relations we use above often do not give

fine enough decompositions to answer Questions 1 and 2. We therefore use the second

idempotent relations discussed in Section 2. Recall (1) from Section 2

(14) JX ∼
⊕
i,j

e(πi,j)JX .

Our primary goal is to study elliptic curves that show up in the decomposition above so

we need to identify which summands in (14) have dimension 1. We use work of Ellenberg

in [7] to compute the dimensions of these factors. We first define a special representation

of G.

Definition. Given a map of curves from X to Y = X/G (where Y has genus gY ),

branched at s points with monodromy g1, . . . , gs, let χ〈gi〉 denote the character of G

induced from the trivial character of the subgroup generated by gi, and let χtriv be the

trivial character of G. There is a special character of G which is the character for a

rational representation, defined as

χ = 2χtriv + 2(gY − 1)χ〈1G〉 +
∑

i

(χ〈1G〉 − χ〈gi〉).

A Hurwitz representation of a group G is the rational representation of such a character.

Suppose V is a Hurwitz representation for G. We have the equality

dim e(πi,j)JX =
1
2
dimQπi,jV.
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If χ, χi are the characters associated to V and Vi, the irreducible Q-representations of

G, then the dimension over Q of πi,jV is 〈χi, χ〉. Observe that the dimension of e(πi,j)

is not dependent on j.

In [14], the authors compute automorphism groups and monodromies of covers for

certain curves up to genus 10. We use the method outlined above on their data to search

for examples of curves that answer the questions posed in Section 1. Since the original

questions we pose involve finding curves whose Jacobians have many isogenous elliptic

curve factors, the following theorem will be useful.

Theorem 6. With notation as above, e(πi,j)JX is isogenous to e(πi,k)JX .

Proof. Let M denote the i × i matrix with zeros at the (j, j) and (k, k) entries, a value

of 1 on the rest of the diagonal entries, a 1 at the (j, k) and (k, j) entries, and zeros

everywhere else. It is a quick exercise in matrix multiplication to show that M has order

2. Conjugating πi,j by M gives πi,k. We see this by observing that Mπi,j = πi,kM.

Now since e is a homomorphism and M is, in particular, a unit, e(Mπi,j) = M ′e(πi,j)

= e(πi,kM) = e(πi,k)M ′, where M ′ is also a unit, hence an isogeny of the Jacobian. But

then, since M ′ is an isogeny, M ′e(πi,j)JX ∼ e(πi,j)JX and e(πi,k)M ′JX ∼ e(πi,k)JX .

Hence e(πi,j)JX ∼ e(πi,k)JX . �

Our goal, then, is to use the data in [14] to find automorphism groups G of curves

up to genus 10 such that Q[G] has a summand of the form Mg(∆) somewhere in its

decomposition. The groups in that paper are listed with their ordered pair number from

the table of small groups in the computer algebra package GAP [8] where the first number

is the order of the group and the second number is the group’s number in the GAP table

for that order of group. We will use this notation for certain groups in Theorems 7 and

8. A program being developed for GAP [2], [15] computes the decomposition of Q[G] for

almost all G which we encounter in low genus.

Once we have such examples, we compute the dimension of the summands from (14)

by finding both the Hurwitz character and the irreducible Q-representations, and then

computing the inner products of the irreducible Q-characters with the Hurwitz character.

If the summand corresponding to the summand of Q[G] of the form Mg(∆) is of

dimension 1 then we have found a curve such that JX ∼ Eg.

Theorem 7. For genus 3 through 6 we demonstrate curves which positively answer

Question 1. The automorphism groups of the curves are listed in Table 2. Except for the

genus 3 case, the curves are not hyperelliptic.
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Automorphism Jacobian
Genus Group Decomposition
3 S4 × C2 JX ∼ E3

4 (72, 40) JX ∼ E4

5 (160, 234) JX ∼ E5

6 (72, 15) JX ∼ E6

Table 2. Examples positively answering Question 1

We prove the theorem above for genus 5. The genus 4 and 6 cases work in much the

same way. The genus 3 case is the same curve from Section 3.2.4.

4.1. Genus 5. In genus 5 there is one curve, up to isomorphism, whose automorphism

group G is group number (160, 234) from the table of small groups in GAP [8]. The

monodromy of this cover consists of an order 2, 4, and 5 element. See [14] for a proof of

these statements. Also,

Q[G] ∼= 2Q⊕M2(Q(ζ5 + ζ−1
5 ))⊕ 6M5(Q).

A quick search of all combinations of one each of an order 2, 4, and 5 element reveals

a limited number of such combinations whose product is 1G and which generate G. One

of these must be the monodromy for the covering X → X/G. We compute the Hurwitz

character for each possible monodromy and, regardless of which one we use, the inner

product of any of these Hurwitz characters with the two linear Q-characters is zero.

Hence, by a simple dimension argument, the dimension of e(πi,j)JX for i equal to one

of 4 through 9 must be one, while the dimension of the others, as well as i = 3 must be

zero. Using Theorem 6, this means that JX ∼ E5.

4.2. Lower bounds on t for low genus. For genus greater than 6, our computations

produced no groups G from the data in [14] such that there is a g × g matrix ring in

the decomposition of Q[G]. However we can still use the method above to find nontrivial

lower bounds for the t mentioned in the introduction.

For instance, the GAP group G = (192, 955) is the automorphism group of a curve of

genus 9.

Q[G] ∼= 4Q⊕ 4M3(Q)⊕ 2M2(Q)⊕ 4M6(Q)

and when we compute the inner product of the cover’s monodromy with the irreducible

Q characters, we get a value of 2 for one of the order 3 characters and one of the order 6
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characters and a value of 0 for the rest of the inner products. Thus JX ∼ E3
1 × E6

2 and

so for genus 9, t ≥ 6.

Theorem 8. For genus 7 through 10 we find nontrivial lower bounds for t in Question

2. We summarize our results in Table 3 where Ei denotes an elliptic curve and A is

some abelian variety. The curves with such automorphism groups are not hyperelliptic.

Automorphism Jacobian
Genus Group Decomposition
7 (32, 43) JX ∼ E1 × E2

2 × E4
3

S3 × S3

S3 ×D8

8 (32, 18) JX ∼ E2
1 × E2

2 ×A
9 (192, 955) JX ∼ E3

1 × E6
2

10 (72, 40) JX ∼ E2
1 × E4

2 × E4
3

Table 3. Examples for bounds on t

In the genus 7 case there are three separate one dimensional families which give a

lower bound of 4 for t. In genus 8 and 10, the automorphism groups given are the

automorphism groups of one dimensional families of curves. In genus 9, the group listed

is the automorphism group of one curve of that genus, up to isomorphism.
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Decomposition of Group Algebras, Version 4.1, 2006. (http://www.um.es/adelrio/wedderga.htm).
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