On the parity of k-th powers modulo p

Jennifer Paulhus

Kansas State University

paulhus@math.ksu.edu
www.math.ksu.edu/~paulhus

This is joint work with Todd Cochrane and Chris Pinner of Kansas State University and Jean Bourgain of the Institute for Advanced Study.

Notation

p will denote an odd prime
$\mathbb{O}=\{1,3,5, \ldots, p-2\} \subset \mathbb{Z} / p \mathbb{Z}$ the odd residues
$\mathbb{E}=\{2,4,6, \ldots, p-1\} \subset \mathbb{Z} / p \mathbb{Z}$ the even residues
$e_{p}(*)=e^{2 \pi i * / p}$
We consider

$$
N_{k}=N_{k}(A)=\#\left\{x \in \mathbb{E} \mid A x^{k} \in \mathbb{O}\right\}
$$

where k and A are any integers with $p \nmid A$.
In previous work, we showed $N_{k}>0$ for p sufficiently large and $(k, p-1)=1$, resolving a conjecture of Goresky and Klapper.

A Generalization

Lehmer posed the problem of determining $N_{-1}(1)$, the number of even residues with odd multiplicative inverse $(\bmod p)$. The expectation is that $N_{-1}(1) \sim p / 4$, which was later proven by Zhang.

For example when $p=13, N_{-1}(1)=3$.

Residue	Inverse	Residue	Inverse
2	7	8	5
4	10	10	4
6	11	12	12

In the general setting we no longer always have $N_{k} \sim p / 4$.

k even

$$
\Phi(k)=\max _{\substack{a \in \mathbb{Z} / p \mathbb{Z} \\ a \neq 0}}\left|\sum_{x \neq 0} e_{p}\left(a x^{k}\right)\right|, \quad \Phi^{\prime}(k)=\max _{\substack{a \in \mathbb{Z} / p \mathbb{Z} \\ a \neq 0}}\left|\sum_{x=1}^{(p-1) / 2} e_{p}\left(a x^{k}\right)\right|
$$

When k is even, $\Phi^{\prime}(k)=\frac{1}{2} \Phi(k)$.

Theorem

For any integer k

$$
\left|N_{k}-\frac{p}{4}\right|<\frac{1}{\pi} \Phi^{\prime}(k) \min \left\{\log \left(\frac{356 p}{\Phi^{\prime}(k)}\right), \log (5 p)\right\}
$$

When $\Phi(k)=o(p)$ then $N_{k} \sim p / 4$.

k odd

Two parameters which help dictate the bias are $d=(k, p-1)$ and $d_{1}=(k-1, p-1)$.
Similarly we have the values $s=\frac{p-1}{d}$ and $t=\frac{p-1}{d_{1}}$.

Theorem

(a) If k is odd and t is even then

$$
\left|N_{k}-\frac{p}{4}\right| \leq 0.35 p^{89 / 92} \log ^{3 / 2}(5 p)
$$

(b) If k is odd and t is odd then

$$
\left|N_{k}-\frac{p}{4}\right| \ll d_{1}+\frac{p}{\log p}
$$

As long as $d_{1}=o(p)$ then $N_{k} \sim p / 4$.

Small $s=\frac{p-1}{d}$

An Example

If $k=p-1, x^{k}=1$ identically so $N_{k}=0$ or $\frac{p-1}{2}$ depending on whether A is even or odd.

If $k=\frac{p-1}{2}, x^{k}= \pm 1 . A$ and $-A$ have opposite parity and roughly half even residues are quadratic residues so $N_{k} \sim \frac{p}{4}$.

If $k=\frac{p-1}{3}$ then $A x^{k} \equiv A C_{1}, A C_{2}$, or $A C_{3} \bmod p$ where the C_{i} are the cube roots of unity. Then $N_{k}=0, \frac{p-1}{6}, \frac{p-1}{3}$, or $\frac{p-1}{2}$ depending on how many $A C_{i}$ are odd.

Small $s=\frac{p-1}{d}$, continued

These examples suggest the following theorem.

Theorem

Let k, A be any integers with $p \nmid A$ and
$\left(\mathbb{Z} / p \mathbb{Z}^{*}\right)^{k}=\left\{C_{1}, \ldots, C_{s}\right\}$.
(a) If k is even then $N_{k}=\frac{p-1}{2 s} \sum_{i=1}^{s} \chi_{\mathbb{O}}\left(A C_{i}\right)$. In particular if k is even and s is even then $N_{k}=\frac{p-1}{4}$.
(b) If k is odd then $\left|N_{k}-\frac{p-1}{4}\right|<\frac{s-1}{2 \pi} \sqrt{p} \log (5 p)$.

For a set $I_{,} \chi_{I}(x)$ is the characteristic function, which is 1 if $x \in I$ and zero otherwise.

Small $t=\frac{p-1}{d_{1}}$

An Example

If $k=\frac{p+1}{2}$ then $t=2$ and $A x^{k} \equiv A x$ or $-A x \bmod p$ depending on whether x is a quadratic residue or not. So we expect about half the even residues to become odd.
If $k=\frac{p+2}{3}$ then $t=3$ and $A x^{k} \equiv A C_{1} x, A C_{2} x$ or $A C_{3} x \bmod p$

To compute N_{k} in this example we need to study the distribution of points on the lattices $y \equiv A C_{i} x \bmod p$.

When none of the lattices have a small nonzero point then even and odd values are equidistributed and $N_{k} \sim \frac{p}{4}$.

Bias

If one of the lattices has a small point, there may be bias.

An Example

If $k=\frac{p+2}{3}$ then $t=3$ and $A x^{k} \equiv A C_{1} x, A C_{2} x$ or $A C_{3} x \bmod p$. Our results give that, depending on the size of the smallest point in the lattices, N_{k} is asymptotically between $\frac{p}{4}-\frac{p}{12}$ and $\frac{p}{4}+\frac{p}{12}$.

Another Example

When t and $|A|$ are both small odd numbers we get bias. In particular if $|A|<(p / t)^{1 / 2(t-1)}$ and $t \ll \log p$ then

$$
N_{k} \sim\left(1-\frac{1}{A t}\right) \frac{p}{4}
$$

