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My original interest in Jacobian variety decomposition was
motivated by the following question.

Question

Given a genus g, what is the largest integer t such that there is
some curve X of genus g with JX ∼ E t × A for some elliptic
curve E and an abelian variety A?

The dim(JX ) = g so the largest t can possibly be is g.



Suppose we have a genus g hyperelliptic curve X : y2 = f (x)
such that JX ∼ Eg .

There is a map φ : X → E × E × · · · × E︸ ︷︷ ︸
g

.

If we let K = Q(
√

f (s)) for s ∈ Q then there is a point
P = (s,

√
f (s)) ∈ X (K ) and so for Pi ∈ E/Q(

√
f (s))

φ(P) = P1 × P2 × P3 × · · · × Pg .

We can do some work (using heights) to possibly show that the
Pi are linearly independent and so E has rank at least g.

So we would construct elliptic curves over an infinite number of
quadratic extensions with rank at least g.
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For genus 2 curves:

Gaudry and Schost (’01) show that genus 2 curves with
certain automorphism groups have Jacobians that
decompose into the product of two elliptic curves which are
2-isogenous to each other.

Cardona, Quer and others (’99, ’04, ’07) show that genus 2
curves with dihedral groups as automorphism groups have
elliptic factors with special arithmetic properties (Q-curves,
curves of GL2-type).



For genus 2 curves:

Gaudry and Schost (’01) show that genus 2 curves with
certain automorphism groups have Jacobians that
decompose into the product of two elliptic curves which are
2-isogenous to each other.

Cardona, Quer and others (’99, ’04, ’07) show that genus 2
curves with dihedral groups as automorphism groups have
elliptic factors with special arithmetic properties (Q-curves,
curves of GL2-type).



Most of these results relied on a complete understanding of the
moduli space of genus 2 curves.

Howe, Leprévost, and Poonen (’00) produce curves of genus 2
and 3 whose Jacobians have large torsion subgroups. Their
construction specifically relies on the curves having split
Jacobians.
Their method involves finding elliptic curves with large torsion
subgroups and proving the product of these elliptic curves may
be recognized as the Jacobian of a genus 2 or 3 curve. This is
a somewhat ad hoc method.
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Given a curve X of genus g we let JX denote the Jacobian
variety of X and we let G denote Aut(X ).

Dn, Cn are the dihedral and cyclic groups of order n,
respectively, ζn is a primitive n-th root of unity.

An Example

X : y2 = x(x6 + x3 + 1)
Aut(X ) = D12 = 〈r , s | r6, s2, (rs)2〉 where
r : (x , y) → (ζ3x , ζ6y) s : (x , y) → (1/x , y/x4)
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The techniques described below work for curves defined over
any field. However a field must be specified in order to compute
the automorphism group of the curve.

We assume all curves are defined over an algebraically closed
field of characteristic zero.

End0(JX ) := End(JX )⊗Z Q

Definition

Given ε1, ε2 ∈ End0(JX ),

ε1 ∼ ε2

when χ(ε1) = χ(ε2) for all (virtual) characters χ in End0JX .

Natural map of Q-algebras e : Q[G] → End0(JX )
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An Example

Given a group G, let H ≤ G. We define idempotents of Q[G]

εH =
1
|H|

∑
h∈H

h.

For many groups there are relations among these idempotents.

For example:

Let G be the Klein 4 group with proper, non-trivial subgroups
H1, H2, H3.

ε1G
+ 2εG = εH1

+ εH2
+ εH3
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Another Example

A theorem of Wedderburn says that for any finite group G,

Q[G] =
⊕

i

Mni (∆i)

where ∆i is a division ring.

Let πi,j ∈ Q[G] be the idempotent which is the zero matrix in all
components except the ith matrix where it is the matrix with a 1
in the j , j position and zeros elsewhere.

1Q[G] =
∑
i,j

πi,j
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Theorem (Kani-Rosen, ’89)

If εi , ε
′
j ∈ End0(JX ) are idempotents, then

ε1 + · · ·+ εm ∼ ε′1 + · · ·+ ε′n

if and only if

ε1(JX )× · · · × εm(JX ) ∼ ε′1(JX )× · · · × ε′n(JX ).

Find idempotent relations in Q[G] containing the identity.

Q[G] 1Q[G]y {e}
y

End0JX 1End0JXy {Kani-Rosen}
y

Jacobian isogenies JX
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An Example

Applying the map e and Kani-Rosen to

ε1G
+ 2εG = εH1

+ εH2
+ εH3

gives
JX × J2

X/G ∼ JX/H1
× JX/H2

× JX/H3
.

Theorem (Kani and Rosen, ’89)

Given a curve X, let G ≤ Aut(X ) be a finite group with Hi ≤ G
such that G = H1 ∪ · · · ∪ Hm and Hi ∩ Hj = {1G} if i 6= j . Then
we have the following isogeny relation:

Jm−1
X × Jg

X/G ∼ Jh1
X/H1

× · · · × Jhm
X/Hm

where g = |G| and hi = |Hi |.

Cyclic groups or quaternion group of order 8 (automorphism
group of a genus 4 hyperelliptic curve) can’t be written this way.
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Recall
Q[G] =

⊕
i

Mni (∆i) 1Q[G] =
∑
i,j

πi,j

Applying the map e and Kani-Rosen to this idempotent relation
gives

JX ∼
⊕

i,j

e(πi,j)JX .

What are these e(πi,j)JX ? For our motivational question, we
want many elliptic curves as factors.
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Suppose the quotient map from X to Y = X/G is branched at s
points with monodromy g1, . . . , gs ∈ G.

χ〈gi 〉 is the character of G which is induced from the trivial
character of 〈gi〉 and χtriv is the trivial character of G.

Definition

A Hurwitz character of a group G is a character of the form:

χ = 2χtriv + 2 (gY − 1) χ〈1G〉 +
s∑

i=1

(
χ〈1G〉 − χ〈gi 〉

)
V is the representation associated to this character and the Vi

(with associated character χi ) are the irreducible
Q-representations.



dim e(πi,j)JX = 1
2 dimQπi,jV

and
dimQπi,jV = 〈χi , χ〉

Recall : We want to find lots of isogenous elliptic curves.

Theorem (P., ’07)

With notation as above, e(πi,j)JX is isogenous to e(πi,k )JX .

Key Ingredients in the Proof

We find an ni × ni matrix M of order 2 such that conjugating πi,j

by M gives πi,k .
Now since e is a homomorphism and M is, in particular, a unit,
e(M) is an automorphism of the Jacobian and we can use this
to prove e(πi,j)JX ∼ e(πi,k )JX .
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This theorem suggests we should find curves of genus g whose
automorphism groups have an Mg(∆i) somewhere in the
Wedderburn decomposition or at least try to maximize t in
Mt(∆i).

Work of Magaard, Shaska, Shpectorov, and Völklein (’02)
classifies all full automorphism groups of “large” curves up to
genus 10.

Large in their paper means |G| > 4(g − 1). In particular X/G is
genus 0 in these cases.

Data in their paper provides information about monodromy of
the quotient maps as well as dimensions of the families of
curves with each particular automorphism group.
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Auto. Jacobian

Genus Group Dim. Decomposition

4 (72, 40) 0 JX ∼ E4

5 (160, 234) 0 JX ∼ E5

6 (72, 15) 0 JX ∼ E6

7 (504, 156) 0 JX ∼ E7

8 (336, 208) 0 JX ∼ E8

9 (192, 955) 0 JX ∼ E3
1 × E6

2

10 (360, 118) 0 JX ∼ E10
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The genus 7 curve is a Hurwitz curve called the Macbeath
curve. Students of Macbeath showed by other methods that
JX ∼ E7.
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Work of Brandt and Stichtenoth (’86) and Shaska (’03)
completely classifies all possible full automorphism groups of
hyperelliptic curves over an algebraically closed field of
characteristic zero for any genus.

Let G is the automorphism group of a hyperelliptic curve X and
ω the hyperelliptic involution. The reduced automorphism group
(G/〈ω〉) must be one of Dn, Cn, A4, S4, A5.

For any genus g there is at most one family of hyperelliptic
curves of that genus with reduced automorphism group each of
A4, S4, or A5. This existence is completely determined by the
residue class of g modulo 6, 12, and 30, respectively.



Genus Automorp. Jacobian

Group Dimen. Decomposition

3 S4 × C2 0 E3

4 SL2(3) 0 E2
1 × E2

2

5 A4 × C2 1 A2 × E3

W2 0 E2
1 × E3

2

A5 × C2 0 E5

6 GL2(3) 0 E2
1 × E4

2

7 A4 × C2 1 E × A3
2

8 SL2(3) 1 A2
2,1 × A2

2,2

W3 0 A2
2 × E4

9 A4 × C2 1 A3
2 × E3

W2 0 E1 × E2
2 × A3

2

A5 × C2 0 E4
1 × E5

2

10 SL2(3) 1 A2
2 × A2

3
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The End


