Permutations of even residues modulo p

Jennifer Paulhus

Kansas State University
paulhus@math.ksu.edu

Decimations of I-sequences and permutations of even residues $\bmod p$
To appear.

joint work with

Jean Bourgain, Todd Cochrane, and Christopher Pinner

Available at: http://www.math.ksu.edu/~paulhus

The Problem

Given a prime p, pick integers d and A with $p \nmid A$, $(d, p-1)=1$. Define $\mathbb{E}=\{2,4,6, \ldots, p-1\}$ and
$\mathbb{C}=\{1,3,5, \ldots, p-2\}$ to be the even and odd residues $\bmod p$.

We want to determine when the map $x \rightarrow A x^{d}$ is a permutation of the elements of \mathbb{E} (i.e. when $A \mathbb{E}^{d} \cap \mathbb{O}$ is empty).

The Problem

Given a prime p, pick integers d and A with $p \nmid A$, $(d, p-1)=1$. Define $\mathbb{E}=\{2,4,6, \ldots, p-1\}$ and
$\mathbb{C}=\{1,3,5, \ldots, p-2\}$ to be the even and odd residues $\bmod p$.

We want to determine when the map $x \rightarrow A x^{d}$ is a permutation of the elements of \mathbb{E} (i.e. when $A \mathbb{E}^{d} \cap \mathbb{O}$ is empty).

There is the trivial case ($d=A=1$).

The Problem

Given a prime p, pick integers d and A with $p \nmid A$, $(d, p-1)=1$. Define $\mathbb{E}=\{2,4,6, \ldots, p-1\}$ and
$\mathbb{O}=\{1,3,5, \ldots, p-2\}$ to be the even and odd residues $\bmod p$.

We want to determine when the map $x \rightarrow A x^{d}$ is a permutation of the elements of \mathbb{E} (i.e. when $A \mathbb{E}^{d} \cap \mathbb{O}$ is empty).

There is the trivial case ($d=A=1$). And there are some other cases. For instance if $p=5, d=3$, and $A=3$, then the map sending x to $A x^{d}$ sends the residue 2 to the residue 4 and sends the residue 4 to the residue 2 .

The following 6 cases give permutations of \mathbb{E} :

$$
(p, A, d)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9),(13,1,5)
$$

Conjecture (Goresky and Klapper, 1997)

With the exception of the six cases listed before, if $(A, d) \neq(1,1)$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

The following 6 cases give permutations of \mathbb{E} :

$$
(p, A, d)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9),(13,1,5)
$$

Conjecture (Goresky and Klapper, 1997)

With the exception of the six cases listed before, if
$(A, d) \neq(1,1)$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Theorem (Bourgain, Cochrane, P., Pinner)

For $p>2.26 \cdot 10^{55}$ and $(A, d) \neq(1,1), A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Motivation

Definition

Given a prime p, an ℓ-sequence based on p is a sequence $\left\{a_{i}\right\}_{i}$ of 0 's and 1 's with $a_{i} \equiv\left(2^{-i} \bmod p\right) \bmod 2$.

These sequences are strictly periodic with period $p-1$ when 2 is a primitive root $\bmod p$.

Motivation

Definition

Given a prime p, an ℓ-sequence based on p is a sequence $\left\{a_{i}\right\}_{i}$ of 0 's and 1 's with $a_{i} \equiv\left(2^{-i} \bmod p\right) \bmod 2$.

These sequences are strictly periodic with period $p-1$ when 2 is a primitive root $\bmod p$.

- Output sequence from maximal period feedback with carry shift register
- 2-adic expansion of a rational number r / p with $(r, p)=1$
- Single codeword in the Barrows-Mandelbaum arithmetic code

Definition

If \mathbf{a} is an ℓ-sequence based on p then if $(d, p-1)=1$, an allowable decimation of \mathbf{a} is the sequence $\mathbf{x}=\mathbf{a}^{\mathbf{d}}=\left\{\mathbf{a}_{d \cdot i}\right\}_{i}$.

Definition

If \mathbf{a} is an ℓ-sequence based on p then if $(d, p-1)=1$, an allowable decimation of \mathbf{a} is the sequence $\mathbf{x}=\mathbf{a}^{\mathbf{d}}=\left\{\mathbf{a}_{d \cdot i}\right\}_{i}$.

Definition

Two periodic binary sequences \mathbf{a} and \mathbf{b} with the same period T are cyclically distinct if $\mathbf{a}_{\mathbf{t}} \neq \mathbf{b}$ for all $0<t<T$, where $\mathbf{a}_{\mathbf{t}}=\left\{\mathbf{a}_{i+t}\right\}_{i}$.

Definition

If \mathbf{a} is an ℓ-sequence based on p then if $(d, p-1)=1$, an allowable decimation of \mathbf{a} is the sequence $\mathbf{x}=\mathbf{a}^{\mathbf{d}}=\left\{\mathbf{a}_{d \cdot i}\right\}_{i}$.

Definition

Two periodic binary sequences \mathbf{a} and \mathbf{b} with the same period T are cyclically distinct if $\mathbf{a}_{\mathbf{t}} \neq \mathbf{b}$ for all $0<t<T$, where $\mathbf{a}_{\mathbf{t}}=\left\{\mathbf{a}_{i+t}\right\}_{i}$.

Conjecture (Goresky and Klapper, 1997)

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of \mathbf{a} is cyclically distinct.

This conjecture would give many distinct sequences with ideal arithmetic cross-correlation.

Conjecture (GK-Conjecture)

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of a is cyclically distinct.

Conjecture (GK-Conjecture)

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of a is cyclically distinct.
\mathbf{a} is a cyclic permutation of \mathbf{a}^{d} if and only if there exists
$A \in(\mathbb{Z} / p \mathbb{Z})^{\times}$with $\left(A 2^{-i d} \bmod p\right) \equiv\left(2^{-i} \bmod p\right) \bmod 2$ for all i
if and only if $\left(A x^{d} \bmod p\right) \equiv(x \bmod p) \bmod 2$ for all x.

Conjecture (GK-Conjecture)

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of a is cyclically distinct.
\mathbf{a} is a cyclic permutation of \mathbf{a}^{d} if and only if there exists $A \in(\mathbb{Z} / p \mathbb{Z})^{\times}$with $\left(A 2^{-i d} \bmod p\right) \equiv\left(2^{-i} \bmod p\right) \bmod 2$ for all i
if and only if $\left(A x^{d} \bmod p\right) \equiv(x \bmod p) \bmod 2$ for all x.
Note: We need 2 to be a primitive root for the second equivalence.

Conjecture (GK-Conjecture)

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of a is cyclically distinct.
\mathbf{a} is a cyclic permutation of \mathbf{a}^{d} if and only if there exists $A \in(\mathbb{Z} / p \mathbb{Z})^{\times}$with $\left(A 2^{-i d} \bmod p\right) \equiv\left(2^{-i} \bmod p\right) \bmod 2$ for all i
if and only if $\left(A x^{d} \bmod p\right) \equiv(x \bmod p) \bmod 2$ for all x.
Note: We need 2 to be a primitive root for the second equivalence.

Conjecture (GK-Conjecture)

If 2 is a primitive root modulo p, with the exception of the six cases listed before, if $(A, d) \neq(1,1)$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Previous Work

Goresky, Klapper, Murty, and Shparlinski verified the conjecture for primes p less than 2 million. And for the following cases:
(1) $d=-1$
(2) $p \equiv 1 \bmod 4$ and $d=\frac{p+1}{2}$
(3) $0<d \leq \frac{\left(p^{2}-1\right)^{4}}{2^{24} p^{7}}$ or $0>d \geq-\frac{\left(p^{2}-1\right)^{4}}{2^{25} p^{7}}$

Our Result

Theorem (Bourgain, Cochrane, P., Pinner)
For $p>2.26 \cdot 10^{55}$ and $(A, d) \neq(1,1), A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Our Result

Theorem (Bourgain, Cochrane, P., Pinner)
For $p>2.26 \cdot 10^{55}$ and $(A, d) \neq(1,1), A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Goal: Find $x \in \mathbb{E}$ such that $A x^{d} \in \mathbb{O}$.

Our Result

Theorem (Bourgain, Cochrane, P., Pinner)

For $p>2.26 \cdot 10^{55}$ and $(A, d) \neq(1,1), A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Goal: Find $x \in \mathbb{E}$ such that $A x^{d} \in \mathbb{O}$.
Show there exists a solution (x, y) to the equation $A(2 x)^{d}=2 y-1$ over $\mathbb{Z} / p \mathbb{Z}$ with $(x, y) \in I_{1} \times I_{2}$.
$I_{1}=\left\{0,1,2, \ldots, \frac{p-1}{2}\right\} \in \mathbb{Z} / p \mathbb{Z} \quad I_{2}=I_{1}-\{0\} \in \mathbb{Z} / p \mathbb{Z}$.

For the intervals $I=\left\{0,1,2, \ldots, \frac{p-1}{4}\right\}$ and $J=\left\{1,2, \ldots, \frac{p+1}{4}\right\}$, we let χ_{I} and χ_{J} be their characteristic functions.

For the intervals $I=\left\{0,1,2, \ldots, \frac{p-1}{4}\right\}$ and $J=\left\{1,2, \ldots, \frac{p+1}{4}\right\}$, we let χ_{I} and χ_{J} be their characteristic functions.

Given any two functions f and g on $\mathbb{Z} / p \mathbb{Z}$ we define the convolution as $f * g(x)=\sum_{u} f(u) g(x-u)$.

For the intervals $I=\left\{0,1,2, \ldots, \frac{p-1}{4}\right\}$ and $J=\left\{1,2, \ldots, \frac{p+1}{4}\right\}$, we let χ_{I} and χ_{J} be their characteristic functions.

Given any two functions f and g on $\mathbb{Z} / p \mathbb{Z}$ we define the convolution as $f * g(x)=\sum_{u} f(u) g(x-u)$.

We then define $\alpha(x, y)=\chi_{I} * \chi_{I}(x) \cdot \chi_{I} * \chi_{J}(y)$.
α is supported on $I_{1} \times I_{2}\left(\right.$ since $I+I \subset I_{1}$ and $\left.I+J \subset I_{2}\right)$.

For the intervals $I=\left\{0,1,2, \ldots, \frac{p-1}{4}\right\}$ and $J=\left\{1,2, \ldots, \frac{p+1}{4}\right\}$, we let χ_{I} and χ_{J} be their characteristic functions.

Given any two functions f and g on $\mathbb{Z} / p \mathbb{Z}$ we define the convolution as $f * g(x)=\sum_{u} f(u) g(x-u)$.

We then define $\alpha(x, y)=\chi_{I} * \chi_{I}(x) \cdot \chi_{I} * \chi_{J}(y)$.
α is supported on $I_{1} \times I_{2}\left(\right.$ since $I+I \subset I_{1}$ and $\left.I+J \subset I_{2}\right)$.

Goal: Show

$$
\sum_{A(2 x)^{d}=2 y-1} \alpha(x, y)>0
$$

By results in finite Fourier series,
$\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \alpha(x, y)=\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \sum_{\substack{u, v}} a(u, v) e_{p}(u x+v y)$
where the $a(u, v)$ are the Fourier coefficients

By results in finite Fourier series,
$\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \alpha(x, y)=\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \sum_{\substack{u, v}} a(u, v) e_{p}(u x+v y)$
where the $a(u, v)$ are the Fourier coefficients
We have a main term $\left.a(0,0)(p-1)=\frac{p-1}{p^{2}}\left|\|\left.\right|^{3}\right| J \right\rvert\,$.
We estimate the error term (using various techniques, in particular binomial exponential sum bounds) and get that the main term is greater than the error term when $M<.000823 p^{3}$
$M=\#\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\left(\mathbb{Z} / p \mathbb{Z}^{*}\right)^{4} \mid x_{1}+x_{2}=x_{3}+x_{4}, x_{1}^{d}+x_{2}^{d}=x_{3}^{d}+x_{4}^{d}\right\}$

Theorem (Bourgain, Cochrane, P., Pinner) If $M<.000823 p^{3}$, the GK-conjecture holds.

Theorem (Bourgain, Cochrane, P., Pinner)

 If $M<.000823 p^{3}$, the GK-conjecture holds.Let $d_{1}=(d-1, p-1)$. As long as d_{1} is not too large we can bound M using previous results of Cochrane and Pinner. (Otherwise we have to do more work and actually get a better result!)

Theorem (Bourgain, Cochrane, P., Pinner)

 If $M<.000823 p^{3}$, the GK-conjecture holds.Let $d_{1}=(d-1, p-1)$. As long as d_{1} is not too large we can bound M using previous results of Cochrane and Pinner. (Otherwise we have to do more work and actually get a better result!)

Theorem (Bourgain, Cochrane, P., Pinner)

For any integer d with $(d, p-1)=1$ and $d_{1}<.18(p-1)^{16 / 23}$ then $M \leq 13658 p^{66 / 23}$.

This gives us the conjecture for $p>2.26 \cdot 10^{55}$.

Large d_{1}

If d_{1} is larger than $0.18(p-1)^{16 / 23}$ we use multiplicative characters to get the following.

Large d_{1}

If d_{1} is larger than $0.18(p-1)^{16 / 23}$ we use multiplicative characters to get the following.

Theorem (Bourgain, Cochrane, P., Pinner)

(a) Let $d_{1}=(d-1, p-1)<p-1$. If $d_{1}>8\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}$ then the GK-conjecture holds.
(b) If $p>2.1 \cdot 10^{7}$ and $d_{1}>10 \sqrt{p}$ then the GK-conjecture holds.

Possible Generalizations

1. Apply the methods in the paper to q-ary l-sequences: $a_{i} \equiv\left(q^{-i} \bmod p\right) \bmod q$ where q is a primitive root $\bmod p$. (This would be the output of a feedback with carry shift register (FCSR) in which the cells and multipliers are in $\mathbb{Z} / q \mathbb{Z}$.)

Possible Generalizations

1. Apply the methods in the paper to q-ary $/$-sequences: $a_{i} \equiv\left(q^{-i} \bmod p\right) \bmod q$ where q is a primitive root $\bmod p$. (This would be the output of a feedback with carry shift register (FCSR) in which the cells and multipliers are in $\mathbb{Z} / q \mathbb{Z}$.)
2. A problem of D.H. Lehmer: Obtain an asymptotic formula for the number N_{-1} of even residues $x \bmod p$ such that $x^{-1} \bmod p$ is an odd residue. Kloosterman sum estimates give $N_{-1} \sim p / 4$.

Possible Generalizations

1. Apply the methods in the paper to q-ary l-sequences: $a_{i} \equiv\left(q^{-i} \bmod p\right) \bmod q$ where q is a primitive root $\bmod p$. (This would be the output of a feedback with carry shift register (FCSR) in which the cells and multipliers are in $\mathbb{Z} / q \mathbb{Z}$.)
2. A problem of D.H. Lehmer: Obtain an asymptotic formula for the number N_{-1} of even residues $x \bmod p$ such that $x^{-1} \bmod p$ is an odd residue. Kloosterman sum estimates give $N_{-1} \sim p / 4$.

Given d relatively prime to $p-1$ obtain an asymptotic formula for the number N_{d} of even residues $x \bmod p$ such that $x^{d} \bmod p$ is an odd residue. What we have done is establish that N_{d} is nonzero.

