Permutations of even residues modulo p

Todd Cochrane Jennifer Paulhus Christopher Pinner

(Jean Bourgain)

Kansas State University
paulhus@math.ksu.edu
www.math.ksu.edu/~paulhus

Notation

For this talk

- $p>13$ a prime
- A, d integers where $(d, p-1)=1$ and $p \nmid A$
- \mathbb{E} the set of even residues $\bmod p, \mathbb{E}=\{2,4,6, \ldots, p-1\}$
- \mathbb{O} the set of odd residues $\bmod p, \mathbb{O}=\{1,3,5, \ldots, p-2\}$

We want to determine when the map $x \rightarrow A x^{d}$ is a permutation of the elements of \mathbb{E} (i.e. when $A \mathbb{E}^{d} \cap \mathbb{O}$ is empty).

Besides the trivial case $(d=A=1)$ the following 6 cases also give permutations of \mathbb{E} :

$$
(p, A, d)=(5,3,3),(7,1,5),(11,9,3),(11,3,7),(11,5,9),(13,1,5)
$$

We can assume $0<|A|<p / 2$ and $|d|<p / 2$.

Conjecture (Goresky and Klapper, 1997)

If 2 is a primitive root modulo p, with the exception of the six cases listed before, if $(A, d) \neq(1,1)$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Goresky, Klapper, Murty, and Shparlinski verified the conjecture for primes p less than 2 million. And for the following cases:
(1) $d=-1$
(2) $p \equiv 1 \bmod 4$ and $d=\frac{p+1}{2}$
(3) $1<d \leq \frac{\left(p^{2}-1\right)^{4}}{2^{16} p^{7}(\ln (q)+2)^{4}}$

They subsequently improved (3) to $d \leq \frac{\left(p^{2}-1\right)^{4}}{2^{25} p^{7}}$.
It was suggested by Bourgain that exponential sum bounds of Cochrane and Pinner could be used to solve this conjecture for sufficiently large primes.

Motivation

Definition

Given a prime p and $A \in \mathbb{Z} / p \mathbb{Z}$, an ℓ-sequence based on p is a sequence $\left\{a_{i}\right\}_{i}$ of 0 's and 1 's with $a_{i} \equiv\left(A 2^{-i} \bmod p\right) \bmod 2$.

These sequences are strictly periodic with period $p-1$ when 2 is a primitive root $\bmod p$.

- 2-adic expansion of a rational number r / p with $(r, p)=1$
- Single codeword in the Barrows-Mandelbaum arithmetic code
- Output sequence from maximal period feedback with carry shift register

Definition

If \mathbf{a} is an ℓ-sequence based on p then if $(d, p-1)=1$, an allowable decimation of \mathbf{a} is the sequence $\mathbf{x}=\mathbf{a}^{\mathbf{d}}=\left\{\mathbf{a}_{d \cdot i}\right\}_{i}$.

Definition

Two periodic binary sequences \mathbf{a} and \mathbf{b} with the same period T are cyclically distinct if $\mathbf{a}_{\mathbf{t}} \neq \mathbf{b}$ for all $0<t<T$, where $\mathbf{a}_{\mathbf{t}}=\left\{\mathbf{a}_{i+t}\right\}_{i}$.

Conjecture (Goresky and Klapper, 1997)

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of \mathbf{a} is cyclically distinct.

This conjecture would give many distinct sequences with ideal arithmetic cross-correlation.

Conjecture

If $p>13$ is a prime such that 2 is a primitive root $\bmod p$ and \mathbf{a} is an ℓ-sequence based on p, then every pair of allowable decimations of \mathbf{a} is cyclically distinct.
a is a cyclic permutation of \mathbf{a}^{d} if and only if there exists $A \in(\mathbb{Z} / p \mathbb{Z})^{\times}$with $\left(A 2^{-i d} \bmod p\right) \equiv\left(2^{-i} \bmod p\right) \bmod 2$ for all i
if and only if $\left(A x^{d} \bmod p\right) \equiv(x \bmod p) \bmod 2$ for all x.
Note: We need 2 to be a primitive root for the second equivalence.

Conjecture

If 2 is a primitive root modulo p, with the exception of the six cases listed before, if $(A, d) \neq(1,1)$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Theorem (Cochrane, P., Pinner)

For $p>4.29 \cdot 10^{68}$ and $(A, d) \neq(1,1), A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

To show $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty, we find a solution (x, y) to the equation $A(2 x)^{d}=2 y-1$ with $(x, y) \in I_{1} \times I_{2}$ where

$$
\begin{gathered}
I_{1}=\left\{0,1,2, \ldots, \frac{p-1}{2}\right\} \\
I_{2}=I_{1}-\{0\}
\end{gathered}
$$

Additive Character Approach

$$
I_{3}=\left\{0,1,2, \ldots,\left\lfloor\frac{p-1}{4}\right\rfloor\right\} \text { and } I_{4}=\left\{1,2, \ldots,\left\lfloor\frac{p+1}{4}\right\rfloor\right\}
$$

so that $I_{3}+I_{3} \subset I_{1}$ and $I_{3}+I_{4} \subset I_{2}$. Let α be the convolution

$$
\alpha(x, y)=\chi_{I_{3}} * \chi_{I_{3}}(x) \cdot \chi_{I_{3}} * \chi_{I_{4}}(y)
$$

χ_{I} is the characteristic function of an interval I.
We let $e_{p}(\star)$ be the additive character $e^{2 \pi i \star / p}$. The Fourier expansion of $\alpha(x, y)$ is $\sum a(u, v) e_{p}(u x+v y)$.
α is supported on $I_{1} \times I_{2}$ so enough to show

$$
\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \alpha(x, y)>0
$$

$$
\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \alpha(x, y)=\sum_{\substack{A(2 x)^{d}=2 y-1 \\ x \neq 0}} \sum_{u, v} a(u, v) e_{p}(u x+v y)=a(0,0)(p-1)+
$$

$$
\begin{aligned}
& \sum_{(u, v) \neq(0,0)} a(u, v) e_{p}\left(2^{-1} v\right) \sum_{x \neq 0} e_{p}\left(u x+v\left(A 2^{d-1} x^{d}\right)\right) \\
& =\frac{\left|I_{3}\right|^{3}\left|I_{4}\right|(p-1)}{p^{2}}+\text { Error. }
\end{aligned}
$$

We define

$$
\left.\Phi_{d}:=\max _{(u, v) \neq(0,0)} \mid \sum_{x=1}^{p-1} e_{p}\left(u x+v x^{d}\right)\right) \mid
$$

Then \mid Error $\left.\left|\leq \Phi_{d}\right| I_{3}\right|^{3 / 2}\left|I_{4}\right|^{1 / 2}$.

Theorem (Cochrane, P., Pinner)

If $(d, p-1)=1, p \nmid A$, and $\Phi_{d} \leq \frac{p}{16}$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

Define $d_{1}=(d-1, p-1)$. Previous work of Cochrane and Pinner gives for any nonzero a, b :

$$
\left|\Phi_{d}-d_{1}\right| \leq \frac{p^{3 / 2}}{d_{1}}
$$

So

$$
32 \sqrt{p}<d_{1}<\frac{p}{32} \text { implies } \Phi_{d}<\frac{p}{16} .
$$

Things go bad if $d_{1}>p / 16+16 \sqrt{p}$ since $\Phi_{d} \approx d_{1}$ when $d_{1}>p^{3 / 4}$.

$$
\begin{aligned}
& S_{+}:=S_{+}(k, \ell)=\sum_{x=1}^{p-1} e_{p}\left(a x^{k}+b x^{\ell}\right), p \nmid a b, 1 \leq \ell<k<p-1 \\
& S_{-}:=S_{-}(k, \ell)=\sum_{x=1}^{p-1} e_{p}\left(a x^{k}+b x^{-\ell}\right), p \nmid a b, 1 \leq \ell \leq k,(k+\ell)<p-1
\end{aligned}
$$

Theorem (Cochrane, P., Pinner)

For any integer d with $(d, p-1)=1$, if $d_{1}<.2(p-1)^{16 / 23}$ then $\left|S_{ \pm}(k, \ell)\right| \leq 10.811 p^{89 / 92}$.

This theorem says $\Phi_{d}<10.811 p^{89 / 92}$ which is less than $p / 16$ when $p>(10.811 \cdot 16)^{92 / 3}=4.29 \cdot 10^{68}$.

Idea of this proof is to apply a transformation to $S_{ \pm}$sending x to x^{m} where m is chosen to satisfy the following:

- $m k \equiv \alpha \bmod (p-1)$
- $\pm m \ell \equiv \beta \bmod (p-1)\left(\pm\right.$ dependent on S_{+}or $\left.S_{-}\right)$
- $0 \leq \alpha \leq \frac{1}{c}(p-1)^{16 / 23},|\beta| \leq c(p-1)^{7 / 23}$ where $c=5.146$
- $(\alpha, \beta) \neq(0,0)$

We now have $S_{ \pm}$in terms of x^{α} and x^{β} and we use Mordell bounds and the following lemma to get improved bounds.

$$
\text { Set } \lambda=(\ell, k, p-1), \lambda_{1}=(\ell, k), \ell_{+}=\ell, \ell_{-}=2 \ell
$$

Lemma (Cochrane and Pinner, 2003)

For $k \leq \frac{1}{32}(p-1)^{\frac{2}{3}} \lambda_{1}^{\frac{1}{6}} \ell^{\frac{1}{6}}$,

$$
\left|S_{ \pm}\right| \leq p^{\frac{1}{4}}\left(\lambda^{2}(p-1)^{2}+2 k^{2} \ell_{ \pm}(p-1)+(p-1)^{2} M\right)^{1 / 4}
$$

where $M=\max \left\{758 \cdot 5^{2 / 3} k l_{ \pm} \delta_{ \pm}^{\frac{-1}{3}} \lambda / \lambda_{1}, 557 \delta_{ \pm} \lambda\right\}$ and $\delta_{ \pm}=(k \mp \ell) / \lambda_{1}$

Multiplicative Character Approach

What if d_{1} is large? (larger than . $2(p-1)^{16 / 23}$)

Theorem (Cochrane, P., Pinner)

(a) Let $d_{1}=(d-1, p-1)<p-1$. If $d_{1}>8\left(\frac{4}{\pi^{2}} \log p+1\right)^{2} \sqrt{p}$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.
(b) If $p>8.8 \cdot 10^{7}$ and $d_{1}>17 \sqrt{p}$ then $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty.

So $d_{1}>.2(p-1)^{16 / 23}>17 \sqrt{ } p$ when $p>7.3 \cdot 10^{9}$.

- Let $k=(p-1) / d_{1}$
- Choose B such that $p \nmid B$ and $A B^{d-1} \not \equiv 1 \bmod p$
- Find $-p / 2<C<p / 2$ such that $C \equiv A B^{d-1} \bmod p$

If there were some $B z^{k} \in \mathbb{E}$ with $B C z^{k} \in \mathbb{O}$ then
$A\left(B z^{k}\right)^{d} \equiv B C z^{k} \bmod p\left(\right.$ so $A \mathbb{E}^{d} \cap \mathbb{O}$ is nonempty).
Let $x \equiv B z^{k} \bmod p$ and $y \equiv B C z^{k} \bmod p$.
We want to know when $y \equiv C x \bmod p$ has a solution for $x \in \mathbb{E}$, $B^{-1} x$ a k th power, and $y \in \mathbb{O}$. Equivalently, we want to know when N is positive:

$$
N=\frac{1}{k} \sum_{x \in \mathbb{E}}\left(\sum_{\psi^{k}=\psi_{0}} \psi\left(B^{-1} x\right)\right) \chi_{\mathbb{E}}(x) \chi_{\mathbb{O}}(C x)
$$

