Permutations of even residues modulo p

Todd Cochrane Jennifer Paulhus Christopher Pinner

(Jean Bourgain)

Kansas State University

paulhus@math.ksu.edu www.math.ksu.edu/~paulhus

Notation

For this talk

- *p* > 13 a prime
- A, d integers where (d, p 1) = 1 and $p \nmid A$
- \mathbb{E} the set of even residues mod p, $\mathbb{E} = \{2, 4, 6, \dots, p-1\}$
- \mathbb{O} the set of odd residues mod p, $\mathbb{O} = \{1, 3, 5, \dots, p-2\}$

We want to determine when the map $x \to Ax^d$ is a permutation of the elements of \mathbb{E} (i.e. when $A\mathbb{E}^d \cap \mathbb{O}$ is empty).

Besides the trivial case (d = A = 1) the following 6 cases also give permutations of \mathbb{E} :

(p, A, d) = (5, 3, 3), (7, 1, 5), (11, 9, 3), (11, 3, 7), (11, 5, 9), (13, 1, 5).

We can assume 0 < |A| < p/2 and |d| < p/2.

Conjecture (Goresky and Klapper, 1997)

If 2 is a primitive root modulo p, with the exception of the six cases listed before, if $(A, d) \neq (1, 1)$ then $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty.

Goresky, Klapper, Murty, and Shparlinski verified the conjecture for primes p less than 2 million. And for the following cases:

1
$$d = -1$$
 $p \equiv 1 \mod 4$ and $d = \frac{p+1}{2}$
 $1 < d \le \frac{(p^2 - 1)^4}{2^{16}p^7(\ln(q) + 2)^4}$

They subsequently improved (3) to $d \leq \frac{(p^2-1)^4}{2^{25}p^7}$.

It was suggested by Bourgain that exponential sum bounds of Cochrane and Pinner could be used to solve this conjecture for sufficiently large primes.

Definition

Given a prime p and $A \in \mathbb{Z}/p\mathbb{Z}$, an ℓ -sequence based on p is a sequence $\{a_i\}_i$ of 0's and 1's with $a_i \equiv (A2^{-i} \mod p) \mod 2$.

These sequences are strictly periodic with period p - 1 when 2 is a primitive root mod p.

- 2-adic expansion of a rational number r/p with (r, p) = 1
- Single codeword in the Barrows-Mandelbaum arithmetic code
- Output sequence from maximal period feedback with carry shift register

Definition

If **a** is an ℓ -sequence based on *p* then if (d, p - 1) = 1, an **allowable decimation** of **a** is the sequence $\mathbf{x} = \mathbf{a}^{\mathbf{d}} = \{\mathbf{a}_{d \cdot i}\}_{i}$.

Definition

Two periodic binary sequences **a** and **b** with the same period *T* are **cyclically distinct** if $\mathbf{a}_t \neq \mathbf{b}$ for all 0 < t < T, where $\mathbf{a}_t = \{\mathbf{a}_{i+t}\}_{i}$.

Conjecture (Goresky and Klapper, 1997)

If p > 13 is a prime such that 2 is a primitive root mod p and **a** is an ℓ -sequence based on p, then every pair of allowable decimations of **a** is cyclically distinct.

This conjecture would give many distinct sequences with **ideal** arithmetic cross-correlation.

Conjecture

If p > 13 is a prime such that 2 is a primitive root mod p and **a** is an ℓ -sequence based on p, then every pair of allowable decimations of **a** is cyclically distinct.

a is a cyclic permutation of \mathbf{a}^d if and only if there exists $A \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ with $(A2^{-id} \mod p) \equiv (2^{-i} \mod p) \mod 2$ for all *i* if and only if $(Ax^d \mod p) \equiv (x \mod p) \mod 2$ for all *x*.

Note: We need 2 to be a primitive root for the second equivalence.

Conjecture

If 2 is a primitive root modulo p, with the exception of the six cases listed before, if $(A, d) \neq (1, 1)$ then $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty.

Theorem (Cochrane, P., Pinner)

For $p > 4.29 \cdot 10^{68}$ and $(A, d) \neq (1, 1)$, $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty.

To show $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty, we find a solution (x, y) to the equation $A(2x)^d = 2y - 1$ with $(x, y) \in I_1 \times I_2$ where

$$I_1 = \{0, 1, 2, \dots, \frac{p-1}{2}\}$$

 $I_2 = I_1 - \{0\}.$

Additive Character Approach

$$I_3 = \left\{0, 1, 2, \dots, \left\lfloor \frac{p-1}{4} \right\rfloor\right\}$$
 and $I_4 = \left\{1, 2, \dots, \left\lfloor \frac{p+1}{4} \right\rfloor\right\}$

so that $I_3 + I_3 \subset I_1$ and $I_3 + I_4 \subset I_2$. Let α be the convolution

$$\alpha(\mathbf{X},\mathbf{y}) = \chi_{I_3} * \chi_{I_3}(\mathbf{X}) \cdot \chi_{I_3} * \chi_{I_4}(\mathbf{y}).$$

 χ_I is the characteristic function of an interval *I*.

We let $e_p(\star)$ be the additive character $e^{2\pi i \star/p}$. The Fourier expansion of $\alpha(x, y)$ is $\sum a(u, v)e_p(ux + vy)$.

 α is supported on $I_1 \times I_2$ so enough to show

$$\sum_{\substack{A(2x)^d=2y-1\\x\neq 0}} \alpha(x,y) > 0$$

$$\sum_{\substack{A(2x)^d=2y-1\\x\neq 0}} \alpha(x,y) = \sum_{\substack{A(2x)^d=2y-1\\x\neq 0}} \sum_{\substack{u,v\\x\neq 0}} a(u,v) e_p(ux+vy) = a(0,0)(p-1) + a(0$$

$$\sum_{\substack{(u,v)\neq(0,0)}} a(u,v)e_{p}(2^{-1}v)\sum_{x\neq 0} e_{p}\left(ux+v(A2^{d-1}x^{d})\right)$$
$$=\frac{|I_{3}|^{3}|I_{4}|(p-1)}{p^{2}}+\text{Error.}$$

We define

$$\Phi_d := \max_{(u,v)\neq(0,0)} \left| \sum_{x=1}^{p-1} e_p\left(ux + vx^d \right) \right) \right|$$

Then $|\text{Error}| \le \Phi_d |I_3|^{3/2} |I_4|^{1/2}$.

Theorem (Cochrane, P., Pinner)

If (d, p-1) = 1, $p \nmid A$, and $\Phi_d \leq \frac{p}{16}$ then $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty.

Define $d_1 = (d - 1, p - 1)$. Previous work of Cochrane and Pinner gives for any nonzero *a*, *b*:

$$|\Phi_d-d_1|\leq \frac{p^{3/2}}{d_1}.$$

So

$$32\sqrt{p} < d_1 < rac{p}{32}$$
 implies $\Phi_d < rac{p}{16}$

Things go bad if $d_1 > p/16 + 16\sqrt{p}$ since $\Phi_d \approx d_1$ when $d_1 > p^{3/4}$.

$$S_+ := S_+(k, \ell) = \sum_{x=1}^{p-1} e_p(ax^k + bx^\ell), p \nmid ab, 1 \le \ell < k < p-1$$

$$S_{-} := S_{-}(k, \ell) = \sum_{x=1}^{p-1} e_{p}(ax^{k} + bx^{-\ell}), p \nmid ab, 1 \le \ell \le k, (k+\ell) < p-1$$

Theorem (Cochrane, P., Pinner)

For any integer d with (d, p - 1) = 1, if $d_1 < .2(p - 1)^{16/23}$ then $|S_{\pm}(k, \ell)| \le 10.811 p^{89/92}$.

This theorem says $\Phi_d < 10.811 p^{89/92}$ which is less than p/16 when $p > (10.811 \cdot 16)^{92/3} = 4.29 \cdot 10^{68}$.

Idea of this proof is to apply a transformation to S_{\pm} sending *x* to x^m where *m* is chosen to satisfy the following:

•
$$mk \equiv \alpha \mod (p-1)$$

• $\pm m\ell \equiv \beta \mod (p-1)$ ($\pm \text{ dependent on } S_+ \text{ or } S_-$)

•
$$0 \le \alpha \le \frac{1}{c}(p-1)^{16/23}, |\beta| \le c(p-1)^{7/23}$$
 where $c = 5.146$

• $(\alpha, \beta) \neq (0, 0)$

We now have S_{\pm} in terms of x^{α} and x^{β} and we use Mordell bounds and the following lemma to get improved bounds.

Set
$$\lambda = (\ell, k, p - 1), \lambda_1 = (\ell, k), \ell_+ = \ell, \ell_- = 2\ell$$

Lemma (Cochrane and Pinner, 2003)

$$\begin{aligned} & \textit{For } k \leq \frac{1}{32} (p-1)^{\frac{2}{3}} \lambda_{1}^{\frac{1}{6}} \ell_{\pm}^{\frac{1}{6}}, \\ & |S_{\pm}| \leq p^{\frac{1}{4}} \left(\lambda^{2} (p-1)^{2} + 2k^{2} \ell_{\pm} (p-1) + (p-1)^{2} M \right)^{1/4} \\ & \textit{where } M = \max\{758 \cdot 5^{2/3} \textit{kI}_{\pm} \delta_{\pm}^{\frac{-1}{3}} \lambda / \lambda_{1}, \ 557 \delta_{\pm} \lambda \} \textit{ and } \\ & \delta_{\pm} = (k \mp \ell) / \lambda_{1} \end{aligned}$$

What if d_1 is large? (larger than $.2(p-1)^{16/23}$)

Theorem (Cochrane, P., Pinner)

(a) Let $d_1 = (d - 1, p - 1) . If <math>d_1 > 8(\frac{4}{\pi^2} \log p + 1)^2 \sqrt{p}$ then $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty. (b) If $p > 8.8 \cdot 10^7$ and $d_1 > 17\sqrt{p}$ then $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty.

So $d_1 > .2(p-1)^{16/23} > 17\sqrt{p}$ when $p > 7.3 \cdot 10^9$.

• Choose B such that $p \nmid B$ and $AB^{d-1} \not\equiv 1 \mod p$

• Find -p/2 < C < p/2 such that $C \equiv AB^{d-1} \mod p$

If there were some $Bz^k \in \mathbb{E}$ with $BCz^k \in \mathbb{O}$ then $A(Bz^k)^d \equiv BCz^k \mod p$ (so $A\mathbb{E}^d \cap \mathbb{O}$ is nonempty).

Let
$$x \equiv Bz^k \mod p$$
 and $y \equiv BCz^k \mod p$.

We want to know when $y \equiv Cx \mod p$ has a solution for $x \in \mathbb{E}$, $B^{-1}x$ a *k*th power, and $y \in \mathbb{O}$. Equivalently, we want to know when *N* is positive:

$$N = \frac{1}{k} \sum_{\mathbf{x} \in \mathbb{E}} \left(\sum_{\psi^k = \psi_0} \psi(\mathbf{B}^{-1} \mathbf{x}) \right) \chi_{\mathbb{E}}(\mathbf{x}) \chi_{\mathbb{O}}(\mathbf{C} \mathbf{x}).$$

